Cho tam giác ABC. Gọi M, N là trung điểm AC, AB. Trên tia đối MB, NC lấy D, E sao cho MD=MB ; NE=NC. C/minh A là trung điểm của DE.
Cho tam giác ABC có AB < AC, M là trung điểm của AC. Trên tia đối của MB lấy điểm D sao cho MB = MD. Gọi N là trung điểm của AB. Lấy điểm của NC lấy điểm K sao cho NC = NK. Chứng minh:
a. Tam giác AMB = tam giác CMD
b. Chứng minh: AD // BC
c. D, A, K thẳng hàng
a: Xét ΔAMB và ΔCMD có
MA=MC
\(\widehat{AMB}=\widehat{CMD}\)
MB=MD
Do đó: ΔAMB=ΔCMD
b: Xét ΔMAD và ΔMCB có
MA=MC
\(\widehat{AMD}=\widehat{CMB}\)
MD=MB
Do đó: ΔMAD=ΔMCB
=>\(\widehat{MAD}=\widehat{MCB}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AD//BC
c: Xét ΔNAK và ΔNBC có
NA=NB
\(\widehat{ANK}=\widehat{BNC}\)(hai góc đối đỉnh)
NK=NC
Do đó; ΔNAK=ΔNBC
=>\(\widehat{NAK}=\widehat{NBC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AK//BC
Ta có: AD//BC
AK//BC
AK,AD có điểm chung là A
Do đó: D,A,K thẳng hàng
Cho tam giác ABC. Gọi M, N thứ tự là trung điểm của AC, AB. Trên tia đối của tia MB, NC lần lượt lấy D và E sao cho MD=MB và NE=NC. Chứng tỏ rằng A là trung điểm của DE
Cho tam giác ABC. Gọi M,N thứ tự là trung điểm của AC,AB. Trên tia đối của tia MB,NC lần lượt lấy D và E sao cho MD=MB và NE=NC. Chứng tỏ rằng A là trung điểm của DE
Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của AC, AB. Trên tia đối của MB, NC lấy D,E sao cho MD=MB, NE=NC
CMR: A là trung điểm của DE
Ta có \(\Delta BMC=\Delta DMA\left(c.g.c\right)\Rightarrow BC=DA\)và \(\widehat{MDA}=\widehat{MBC}\)=> AD//BC
và \(\Delta CNB=\Delta ENA\left(c.g.c\right)\Rightarrow BC=EA\)và \(\widehat{NEA}=\widehat{NCB}\)=> AE//BC
\(\Rightarrow AD=AE\)và \(A\in DE\)
Vậy A là trung điểm BC
A là trung điểm DE, ko phải BC nha bạn, mình lộn đó.
bạn Thái BInh Nguyên sai rùi bạn có chắc a e d thẳng hàng ko
Cho tam giác ABC, gọi M và N theo thứ tự là trung điểm của AC và AB. Trên tia đối của tia MB lấy điểm D sao cho MD= MB, trên tia đối của tia NC lấy điểm E sao cho NE= NC. Chứng minh rằng:
a) Ba điểm E, A, D thẳng hàng
b) A là trung điểm của ED
a) xét tam giác MAD và tam giác MCB có:
MB=MD(gt)
MA=MC(gt)
AMD=BMC( 2 góc đđ)
suy ra tam giác MAD=MCB(c.g.c)
suy ra ADB=DBC suy ra AD//BC(1)
CM tương tự ta có tam giác EAN=CBN suy ra EA//BC(2)
từ (1)(2) suy ra AD//BC và EA// BC
suy ra A,D,E thẳng hàng
b) theo câu a, ta có tam giác ADM=CBM (c.g.c) suy ra AD=BC
theo câu a, ta có: tam giác AEN=BCN(c.g.c) suy ra EA=BC
từ 2 điều trên suy ra AD=EA
và theo câu a, ta có: a,d,e thẳng hàng
suy ra A là trung điểm của ED
Cho tam giác ABC. M,N lần lượt là trung điểm của AC và AB. Trren tia đối MB lấy D sao cho MD=MB. Trên tia đối NC lấy E sao cho NE=NC. Chứng minh:a) tam giác AEN= tam giác BCN. b) tam giác AMD= tam giác CMB. c) AE=AD. d)AD// BC ; AE//BC
Bài 1. Cho tam giác ABC. Gọi M và N lần lượt là trung điểm của AC và AB. Trên tia đối của các tia MB và NC lần lượt lấy các điểm D và E sao cho MD = MB và NE = NC. Chứng minh rằng:
a) AD = AE.
b) Ba điểm A; E; D thẳng hàng.
\(a,\) Vì M là trung điểm AC và BD nên ABCD là hbh
Do đó \(AD=BC;AD\text{//}BC\left(1\right)\)
Vì N là trung điểm AB và CE nên ACBE là hbh
Do đó \(AE=BC;AE\text{//}BC\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow AD=AE\)
\(b,\left(1\right)\left(2\right)\Rightarrow AD\text{ trùng }AE\Rightarrow A,D,E\text{ thẳng hàng}\)
Bài 1. Cho tam giác ABC. Gọi M và N lần lượt là trung điểm của AC và AB. Trên tia đối của các tia MB và NC lần lượt lấy các điểm D và E sao cho MD = MB và NE = NC. Chứng minh rằng:
a) AD = AE.
b) Ba điểm A; E; D thẳng hàng.
Tham khảo
a) Xét △ADM△ADM và △CBM△CBM ta có :
MD = MB (gt)
ˆM1=ˆM2M1^=M2^ (2 góc đối đỉnh)
AM = CM (gt)
=> △ADM=△CBM△ADM=△CBM (c.g.c)
=> AD = BC (2 cạnh tương ứng) (1)
Xét △AEN△AEN và △BCN△BCN ta có :
AN = BN (gt)
ˆN1=ˆN2N1^=N2^ (2 góc đối đỉnh)
EN = CN (gt)
=> △AEN=△BCN△AEN=△BCN (c.g.c)
=> AE = BC (2 cạnh tương ứng) (2)
Từ (1) và (2) => AD = AE
b) Ta có : △ADM=△BCM△ADM=△BCM (CMT)
=> ˆADM=ˆBCMADM^=BCM^ (2 góc tương ứng)
Mà ˆADMADM^ và ˆBCMBCM^ là 2 góc so le trong
=>AD // BC (dấu hiệu nhận biết 2 đường thẳng song song) (3)
Ta có : △AEN=△BCN△AEN=△BCN (CMT)
=> ˆAEN=ˆBCNAEN^=BCN^ (2 góc tương ứng)
=> Mà ˆAENAEN^ và ˆBCNBCN^ là 2 góc so le trong
=> AE // BC (dấu hiệu nhận biết 2 đường thẳng song song) (4)
Từ (3) và (4) => A,D,EA,D,E thẳng hàng (theo tiên đề Ơ-clit)
Cho tam giác ABC, gọi M,N lần lượt là trung điểm của AC,AB. Trên tia đối của tia MB,NC lấy thứ tự hai điểm D,E sao cho MB=MD, NC=NE. Chứng minh rằng:
a) AD=AE
b) Ba điểm A , D, E thẳng hàng