So sánh giá trị của biểu thức M và N, biết a,b khác 0 và M = (a:a +4018);N=(4020-b:b)
A. M <N
B. M >N
C. M=N
D. Không so sánh được.
Cho biểu thức M=\(\left(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{a-2\sqrt{a}+1}\)với a > 0 và a khác 1
a) Rút gọn biểu thức M
b) So sánh giá trị của M với 1
a,Với \(a>0;a\ne1\)
\(M=\left(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{a-2\sqrt{a}+1}\)
\(=\left(\frac{\sqrt{a}-1+a-\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)^2}\right).\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}=\frac{a-1}{a+\sqrt{a}}\)
b, Ta có : \(1=\frac{a+\sqrt{a}}{a+\sqrt{a}}\)mà \(a-1=\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)\)
\(a+\sqrt{a}=\sqrt{a}\left(\sqrt{a}+1\right)\)vì \(\sqrt{a}-1< \sqrt{a}\)
Vậy \(\frac{a-1}{a+\sqrt{a}}< 1\)hay \(M< 1\)
Cho hai biểu thức: P = 268 + 57 x m - 1659:n và
Q = (1085 - 35 x n):m + 4 x h.
So sánh giá trị của 2 biểu thức P và Q biết m = 8, n = 7, h = 58
Với m=8,n=7,h=58 thì:
P=268+57×m−1659:n
=268+57×8−1659:7
=268+456−237
=724−237
=487
Q=(1085−35×n):m+4×h
=(1085−35×7):8+4×58
=(1085−245):8+232
=840:8+232
=105+232
=337
Mà 487>337 nên P>Q.
Vậy với m=8,n=7,h=58 thì P>Q.
Chú ý
Học sinh cần nhớ thứ tự thực hiện phép tính, từ đó tính đúng giá trị của P và Q .
Không tính giá trị của biểu thức M và N . Hãy so sánh
M=2012.2012 và N=2010.2013
Không tính giá trị của biểu thức M và N . Hãy so sánh
M=2012.2012 và N= 2010.2014
Câu 21: So sánh M = 232 và N = (2 + 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1)
A. M > N B. M < N C. M = N D. M = N – 1
Câu 22: Tìm giá trị lớn nhất của biểu thức B = 4 – 16x2 – 8x
A. 5 B. -5 C. 8 D.-8
Câu 23: Biểu thức E = x2 – 20x +101 đạt giá trị nhỏ nhất khi
A. x = 9 B. x = 10 C. x = 11 D.x = 12
Câu 24: Kết quả của phép chia 15x3y4 : 5x2y2 là
A. 3xy2 B. -3x2y C. 5xy D. 15xy2
Câu 25: Kết quả của phép chia (6xy2 + 4x2y – 2x3) : 2x là
A. 3y2 + 2xy – x2 B. 3y2 + 2xy + x2 C. 3y2 – 2xy – x2 D. 3y2 + 2xy
Câu 21: So sánh M = 232 và N = (2 + 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1)
A. M > N B. M < N C. M = N D. M = N – 1
Câu 22: Tìm giá trị lớn nhất của biểu thức B = 4 – 16x2 – 8x
A. 5 B. -5 C. 8 D.-8
Câu 23: Biểu thức E = x2 – 20x +101 đạt giá trị nhỏ nhất khi
A. x = 9 B. x = 10 C. x = 11 D.x = 12
Câu 24: Kết quả của phép chia 15x3y4 : 5x2y2 là
A. 3xy2 B. -3x2y C. 5xy D. 15xy2
Câu 25: Kết quả của phép chia (6xy2 + 4x2y – 2x3) : 2x là
A. 3y2 + 2xy – x2 B. 3y2 + 2xy + x2 C. 3y2 – 2xy – x2 D. 3y2 + 2xy
a) Cho hai phân số: 1 n và 1 n + 1 (n ∈ Z, n > 0)
Hãy so sánh tích của hai phân số và hiệu của hai phân số trên.
b) Áp dụng kết quả trên để tính giá trị biểu thức sau:
M = 1 3.4 + 1 4.5 + 1 5.6 + 1 6.7 + 1 7.8 + 1 8.9 + 1 9.10 + 1 10.11
a)
1 n . 1 n + 1 = 1 n ( n + 1 ) 1 n − 1 n + 1 = n + 1 − n n ( n + 1 ) = 1 n ( n + 1 ) ⇒ 1 n . 1 n + 1 = 1 n − 1 n + 1
b) Áp dụng kết quả trên để tính giá trị biểu thức sau:
M = 1 3.4 + 1 4.5 + 1 5.6 + 1 6.7 + 1 7.8 + 1 8.9 + 1 9.10 + 1 10.11 M = 1 3 − 1 4 + 1 4 − 1 5 + 1 5 − 1 6 + 1 6 − 1 7 + 1 7 − 1 8 + 1 8 − 1 9 + 1 9 − 1 10 + 1 10 − 1 11 M = 1 3 − 1 11 M = 8 33
cho biểu thức M=\(\dfrac{a\sqrt{a}-b\sqrt{b}}{a-b}-\dfrac{a}{\sqrt{a}+\sqrt{b}}-\dfrac{b}{\sqrt{b}-\sqrt{a}}\) với a,b>0 và a khác b
Rút gọn M và tính giá trị biểu thức M biết (1-a).(1-b)+\(2\sqrt{ab}=1\)
Ta có: \(M=\dfrac{a\sqrt{a}-b\sqrt{b}}{a-b}-\dfrac{a}{\sqrt{a}+\sqrt{b}}+\dfrac{b}{\sqrt{a}-\sqrt{b}}\)
\(=\dfrac{a\sqrt{a}-b\sqrt{b}-a\sqrt{a}+a\sqrt{b}+b\sqrt{a}+b\sqrt{b}}{\left(\sqrt{a}+b\right)\left(\sqrt{a}-\sqrt{b}\right)}\)
\(=\dfrac{\sqrt{ab}}{\sqrt{a}-\sqrt{b}}\)
Cho x+y=4 và x2+y2=10. Tính giá trị của biểu thức M=x6+y6
Cho 8x3-32y-32x2y+8x=0 và y khác 0. Tính giá trị của biểu thức M=3x+2y/3x-2y
Cho x2-5x+1=0 . Tính giá trị của biểu thức M=x4+x21/2x2
Giải giúp mình với!!!
Bài 1:
$2xy=(x+y)^2-(x^2+y^2)=4^2-10=6\Rightarrow xy=3$
$M=x^6+y^6=(x^3+y^3)^2-2x^3y^3$
$=[(x+y)^3-3xy(x+y)]^2-2(xy)^3=(4^3-3.3.4)^2-2.3^3=730$
Bài 2:
$8x^3-32y-32x^2y+8x=0$
$\Leftrightarrow (8x^3+8x)-(32y+32x^2y)=0$
$\Leftrightarrow 8x(x^2+1)-32y(1+x^2)=0$
$\Leftrightarrow (8x-32y)(x^2+1)=0$
$\Rightarrow 8x-32y=0$ (do $x^2+1>0$ với mọi $x$)
$\Leftrightarrow x=4y$
Khi đó:
$M=\frac{3.4y+2y}{3.4y-2y}=\frac{14y}{10y}=\frac{14}{10}=\frac{7}{5}$
Bài cuối $x^21$ không rõ. Bạn xem lại.
a) Chứng minh rằng giá trị của biểu thức A không phụ thuộc vào giá trị của biến y:
A = ( y + 1 ) 3 - ( y - 1 ) 3 - 6(y - 1)(y + 1).
b) So sánh M = 2.(3 + 1)( 3 2 +1)(34 + 1)...( 3 32 + 1) và N = 3 64 .