Bài 3: Cho tam giác ABC vuông tại B. Trên cạnh AC lấy điểm E sao cho AB = AE. Gọi I là trung điểm của BE; K là giao điểm của AI và BC. Trang 4 a) Chứng minh: tg ABI = tg AEI b) Chứng minh: AI ⊥ BE c) Tính số đo góc KEA
Cho tam giác ABC vuông tại A, AB<AC đường cao AH. Lấy điểm E trên cạnh AC sao cho AE=AB. Gọi I là trung điểm của BE. Tính số đo góc IHA.
Bạn xem tại đây
http://olm.vn/hoi-dap/question/234367.html
Cho tam giác ABC vuông tại A (AB < AC). Kẻ tia phân giác của góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho: BE = AB. 1) Chứng minh rằng: ∆ABD = ∆EBD; 2) Gọi giao điểm của BD và AE là I. Hỏi I có là trung điểm của AE không? Vì sao? 3) Kéo dài ED cắt AB tại K. Chứng minh: AK = EC và AE // KC.
b, Vì ∆ABD=∆EBD
=>BAD=BED=90°
=>DE//BC
Ta có AH vuông góc BC
DE vuông góc BC
=>AH//DE(đpcm)
c,Đó AH//DE (đpcm)
=>AH//DK.
Cho tam giác ABC nhọn có AB<AC. Trên cạnh BC lấy điểm E sao cho AB=AE, gọi H là trung điểm của BE.
1. Chứng minh: tam giác ABH = tam giác AEH
2. Chứng minh AH vuông góc BE 3. Trên tia AH lấy điểm F sao cho AH = HF. Kẻ tia Ax // BC, trên Ax lấy điểm I sao cho AI = BE ( I cùng phía B so với đường thẳng AH )
a) Chứng minh: BF=AE
b) Chứng minh: 3 điểm I, B, F thẳng hàng
1: Xét ΔABH và ΔAEH có
AB=AE
BH=EH
AH chung
Do đó: ΔABH=ΔAEH
1: Xét ΔABH và ΔAEH có
AB=AE
BH=EH
AH chung
Do đó: ΔABH=ΔAEH
Cho tam giác ABC vuông tại A (AB<AC), đường cao AH. Trên cạnh AC lấy điểm E sao cho AB=AE. Gọi M là trung điểm của BE. Chứng minh rằng HM là phân giác góc AHC.
Bài 1: Cho tam giác ABC, trên cạnh AB lấy 2 điểm D và F sao cho AD = DF = FB. Các trung tuyến AE, BG của tam giác ABC lần lượt cắt CD, CF tại H và K.
a) CMR: GH, EK, AB cắt nhau tại 1 điểm
b) CMR: AB = 4HK
Bài 2: Cho tam giác ABC có BD và CE là phân giác, cắt nhau tại I. Gọi S là trung điểm BC, biết BI = 2IS.
a) CMR: tam giác ABC vuông
b) CMR: ID / IB = CD / CB
Bài 3: Cho tam giác ABC vuông cân tại A. Trên cạnh AB và AC lần lượt lấy các điểm D và E sao cho AD = AE. Qua A và D, kẻ các đường thẳng vuông góc với BE cắt BC thứ tự tại S và T. CMR: S là trung điểm của TC
Cho tam giác ABC vuông cân đỉnh A. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E, sao cho AD=AE. Gọi I là giao điểm của BE và CD, chứng minh:
a, BE=CD
b, tam giác BID = tam giác CIE
c, AI là trung trực của đoạn thẳng BC
d, Qua D vẽ đường thẳng vuông góc với BE, cắt BE ở K, cắt AC ở H, chứng minh: A là trung điểm của đoạn thẳng HC
Giúp mik với mik đang cần gấp!!!!
a) Xét ΔABE vuông tại A và ΔACD vuông tại A có
AB=AC(ΔABC vuông cân tại A)
AE=AD(gt)
Do đó: ΔABE=ΔACD(cạnh huyền-cạnh góc vuông)
Suy ra: BE=CD(Hai cạnh tương ứng)
Cho tam giác ABC nhọn có AB<AC. Trên cạnh AC lấy E sao cho AB=AE. Gọi H là trung điểm BE. 1) Chứng minh tam giác ABH=AEH (c.c.c) 2) Chứng minh AH vuông góc BE 3) Trên AH lấy điểm F sao AH=HF. Kẻ Ax // BC. Trên Ax lấy I sao AI=BE (I cùng phía với AH). Chứng minh rằng: a) Chứng minh BF=AE b) Chứng minh 3 điểm I, B, F thẳng hàng ( kẻ hình nữa nhé )
cảm ơn các bạn nhiều , lm nhanh nhất có thể giúp mik nhé
1: Xét ΔABH và ΔAEH có
AB=AE
BH=EH
AH chung
Do đó: ΔAHB=ΔAHE
2: ΔAHB=ΔAHE
=>\(\widehat{AHB}=\widehat{AHE}\)
mà \(\widehat{AHB}+\widehat{AHE}=180^0\)(hai góc kề bù)
nên \(\widehat{AHB}=\widehat{AHE}=\dfrac{180^0}{2}=90^0\)
=>AH\(\perp\)BE
3: Sửa đề: Kẻ tia Ax//BE, trên Ax lấy I sao cho AI=BE(I và B nằm cùng phía so với AH)
a: Xét tứ giác ABFE có
H là trung điểm chung của AF và BE
=>ABFE là hình bình hành
=>BF=AE và BF//AE
b:
Xét tứ giác AEBI có
AI//BE
AI=BE
Do đó: AEBI là hình bình hành
=>BI//AE
Ta có: BF//AE
BI//AE
BI,BF có điểm chung là B
Do đó: F,B,I thẳng hàng
Cho tam giác ABC vuông tại a . Trên tia đối của tia ab lấy điểm d sao cho ab=ad
a) CM tam giác ABC = tam giác adc
b) trên tia đối của tia ac lấy điểm e sao cho ac = ae . Cm dc//be
C) lấy điểm i là trung điểm đc . Cm be = 2.ai
a) chứng minh \(\Delta ABC=\Delta ADC\)
xét 2 tam giác vuông ABC và ADC:
có AC: cạnh chung
AD=AB (gia thiết)
=> \(\Delta ABC=\Delta ADC\) (2cgv)
b) chứng minh DC//BE
xét tứ giác BEDC có 2 đường chéo BD và EC cắt nhau tại trung điểm A của mỗi đường => tứ giác BEDC là hình bình hành => DC//BE
c) chứng minh BE = 2AI
ta có BEDC là hình bình hành => BE=DC
lại có tam giác DAC vuông tại A => đường trung tuyến AI bằng một nửa cạnh huyền, tức là \(AI=\dfrac{1}{2}DC\) hay \(DC=2.AI\) hay \(BE=2.AI\)
chúc em học tốt
Cậu tự vẽ hình nhé.
a, Xét \(\Delta ABC\) vuông tại A và \(\Delta ADC\) vuông tại A có:
AB = AD(gt)
AC chung
\(\Rightarrow\Delta ABC=\Delta ADC\left(ch-cgv\right)\)
b, Ta có \(DB\perp EC\) tại \(A\)
mà \(DA=AB\left(gt\right)\)
\(AE=AC\left(gt\right)\)
\(\Rightarrow\) Tứ giác DCBE là hình thoi ( 2 đường chéo vuông góc với nhau và cắt nhau tại trung điểm mỗi đường )
\(\Rightarrow DC//BE\) ( tính chất hình thoi )
c, Xét \(\Delta DAC\) vuông tại A có:
I là trung điểm của DC
\(\Rightarrow AI=DI=IC=\dfrac{1}{2}DC\)
\(\Rightarrow2AI=DC\)
Lại có DC = EB ( DCBE là hình thoi )
\(\Rightarrow2AI=BE\)
Bài 1.13: Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MA = MD.
a) Chứng minh: AB = CD
b) Chứng minh: BD // AC
c) Tính số đo góc ABD
Bài 1.14: Cho tam giác ABC, AB = AC. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho AD = AE. Gọi M là giao điểm của BE và CD. Chứng minh rằng:
a) BE = CD
b) ∆BMD = ∆CNE
c) AM là tia phân giác của góc BAC