Cho đường Elip có phương trình chính tắc \(\frac{x^2}{64}+\frac{y^2}{36}=1\) \(F_1;F_2\) là hai tiêu điểm. Các điểm M, N nằm trên Elip thỏa mãn MF\(_1\)+NF\(_2\)=17. Tính MF\(_2\)+NF\(_1\)
Cho elip có phương trình chính tắc \(\frac{{{x^2}}}{{100}} + \frac{{{y^2}}}{{64}} = 1\). Tìm các tiêu điểm và tiêu cự của elip.
Ta có: \(c = \sqrt {{{100}^2} - {{64}^2}} = 6\). Do đó (E) có hai tiêu điểm là \({F_1}\left( { - 6;0} \right),{F_2}\left( {6;0} \right)\) và có tiêu cự bằng 2c = 12.
Phương trình nào sau đây là phương trình chính tắc của elip?
\(a)\frac{{{x^2}}}{{64}} + \frac{{{y^2}}}{{64}} = 1\)
b) \(\frac{{{x^2}}}{{64}} - \frac{{{y^2}}}{{64}} = 1\)
c) \(\frac{{{x^2}}}{{64}} + \frac{{{y^2}}}{{25}} = 1\)
d) \(\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{{64}} = 1\)
Phương trình chính tắc của elip là: c) \(\frac{{{x^2}}}{{64}} + \frac{{{y^2}}}{{25}} = 1\).
a) Không là PTCT vì a =b =8
b) Không là PTCT
d) Không là PTCT vì a =5 < b =8.
Phương trình nào sau đây là phương trình chính tắc của đường elip?
A. \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{9} = 1\)
B. \(\frac{{{x^2}}}{1} + \frac{{{y^2}}}{6} = 1\)
C. \(\frac{{{x^2}}}{4} - \frac{{{y^2}}}{1} = 1\)
D. \(\frac{{{x^2}}}{2} + \frac{{{y^2}}}{1} = 1\)
Cho Elip có phương trình \(\frac{{{x^2}}}{{36}} + \frac{{{y^2}}}{9} = 1\). Tìm tiêu điểm và tiêu cự của elip.
Ta có: \({a^2} = 36,{b^2} = 9 \Rightarrow c = \sqrt {36 - 9} = 3\sqrt 3 \) nên elip có hai tiêu điểm là \({F_1}\left( { - 3\sqrt 3 ;0} \right);{F_2}\left( {3\sqrt 3 ;0} \right)\) và tiêu cự là \({F_1}{F_2} = 2c = 6\sqrt 3 \).
Cho biết mỗi đường conic có phương trình dưới đây là đường conic dạng nào ( elip, hypebol, parabol) và tìm tọa độ tiêu điểm của đường conic đó.
a) \({y^2} = 18x\)
b) \(\frac{{{x^2}}}{{64}} + \frac{{{y^2}}}{{25}} = 1\)
c) \(\frac{{{x^2}}}{9} - \frac{{{y^2}}}{{16}} = 1\)
a) Đây là một parabol. Tiêu điểm của parabol có tọa độ là: \(F\left({\frac{9}{2};0} \right)\).
b) Đây là một elip. Tiêu điểm của elip có tọa độ là: \(\left\{ \begin{array}{l}{F_1}\left( { - \sqrt {{a^2} - {b^2}} ;0} \right) = \left( { - \sqrt {39} ;0} \right)\\{F_2}\left( {\sqrt {{a^2} - {b^2}} ;0} \right) = \left( {\sqrt {39} ;0} \right)\end{array} \right.\)
c) Đây là một hyperbol. Tiêu điểm của hypebol có tọa độ là: \(\left\{ \begin{array}{l}{F_1}\left( { - \sqrt {{a^2} + {b^2}} ;0} \right) = \left( { - 5;0} \right)\\{F_2}\left( {\sqrt {{a^2} + {b^2}} ;0} \right) = \left( {5;0} \right)\end{array} \right.\)
Những phương trình nào sau đây là phương trình chính tắc của hypebol ?
a) \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{9} = 1\) b) \(\frac{{{x^2}}}{9} - \frac{{{y^2}}}{9} = 1\) c) \(\frac{{{x^2}}}{9} - \frac{{{y^2}}}{{64}} = 1\) d) \(\frac{{{x^2}}}{{64}} - \frac{{{y^2}}}{9} = 1\)
Những phương trình là phương trình chính tắc của (H) là: b), c), d).
Cho elip \(\left( E \right)\) có phương trình chính tắc \(\frac{{{x^2}}}{{49}} + \frac{{{y^2}}}{{25}} = 1\) .Tìm tọa độ các giao điểm của \(\left( E \right)\) với trục Ox, Oy và tọa độ các tiêu điểm của \(\left( E \right)\).
Từ phương trình chính tắc của (E) ta có: \(a = 7,b = 5 \Rightarrow c = 2\sqrt 6 {\rm{ }}(do{\rm{ }}{{\rm{c}}^2} + {b^2} = {a^2})\)
Vậy ta có tọa độ các giao điểm của (E) với trục Ox, Oy là: \({A_1}\left( { - 7;{\rm{ }}0} \right)\)\({A_2}\left( {7;{\rm{ }}0} \right)\)\({B_1}\left( {0; - {\rm{ 5}}} \right)\)\({B_2}\left( {0;{\rm{ 5}}} \right)\)
Hai tiêu điểm của (E) có tọa độ là: \({F_1}\left( { - 2\sqrt 6 ;0} \right),{F_2}\left( {2\sqrt 6 ;0} \right)\)
Phương trình nào sau đây là phương trình chính tắc của đường hyperbol?
A. \(\frac{{{x^2}}}{3} - \frac{{{y^2}}}{2} = - 1\)
B. \(\frac{{{x^2}}}{1} - \frac{{{y^2}}}{6} = 1\)
C. \(\frac{{{x^2}}}{6} + \frac{{{y^2}}}{1} = 1\)
D. \(\frac{{{x^2}}}{2} + \frac{{{y^2}}}{1} = - 1\)
Gương elip trong một máy tán sỏi thận (H7.33) ứng với clip có phương trình chính tắc là \(\frac{{{x^2}}}{{400}} + \frac{{{y^2}}}{{76}} = 1\) (theo đơn vị cm). Tính khoảng cách từ vị trí đầu phát sóng của máy đến vị trí của sỏi thận cần tán.
Vị tri bắt đầu phát sóng của máy và vị trí viên sỏi được đặt ở hai tiêu điểm của gương elip, do đó khoảng cách cần tìm là tiêu cự của gương và bằng \(2c = 2\sqrt {400 - 76} = 36\left( {cm} \right)\).