cho Δ DEF có cạnh DF = 3cm ; EF = 5cm
a, chứng minh DEF \(\perp\) D
b EH ( H ϵ DF ) ,từ H vẽ HK \(\perp\) EF (K ϵ EF)
c KH cắt DE tại M chứng minh Δ DHM = Δ KHM
rồi suy ra
Bài 1: Cho Δ ABC vuông góc tại A có BC = 5cm, AC = 3cm, EF = 3cm, DE = DF = 2,5cm. Chọn phát biểu đúng?
A. Δ ABC ∼ Δ DEF
B. ABCˆ = EFDˆ
C. ACBˆ = ADFˆ
D. ACBˆ = DEFˆ
Bài 2: Cho hai tam giác Δ RSK và Δ PQM có: RS/PQ = RK/PM = SK/QM thì:
A. Δ RSK ∼ Δ PQM
B. Δ RSK ∼ Δ MPQ
C. Δ RSK ∼ Δ QPM
D. Δ RSK ∼ Δ QMP
Bài 3: Nếu Δ RSK ∼ Δ PQM có: RS/PQ = RK/PM = SK/QM thì
A. RSKˆ = PQMˆ
B. RSKˆ = PMQˆ
C. RSKˆ = MPQˆ
D. RSKˆ = QPMˆ
Bài 4: Chọn câu trả lời đúng?
A. Δ ABC, Δ DEF;AB/DE = AC/DF;Bˆ = Eˆ ⇒ Δ ABC ∼ Δ DEF
B. Δ ABC, Δ DEF;AB/DE = AC/DF;Cˆ = Fˆ ⇒ Δ ABC ∼ Δ DEF
C. Δ ABC, Δ DEF;AB/DE = AC/DF;Aˆ = Dˆ ⇒ Δ ABC ∼ Δ DEF
D. Δ ABC, Δ DEF;AB/DE = AC/DF;Aˆ = Eˆ ⇒ Δ ABC ∼ Δ DEF
Bài 5: Cho hình bên, ABCD là hình thang ( AB//CD ) có AB = 12,5cm; CD = 28,5cm; DABˆ = DBCˆ. Tính độ dài đoạn BD gần nhất bằng bao nhiêu?
A. 17,5 B. 18
C. 18,5 D. 19
II. Bài tập tự luận
Bài 1: Tứ giác ABCD có AB = 2cm; BC = 6cm; CD = 8cm; DA = 3cm và BD = 4cm. Chứng minh rằng:
a) Δ BAD ∼ Δ DBC
b) ABCD là hình thang
Cho tam giác DEF có DE=4cm,EF=5cm,DF=6cm.trên cạnh DE lấy điểm M sao cho DM=3cm,trên cạnh DF lấy điểm N sao cho DN=2cm a,CM: DEF đồng dạng DMN b, tính MN
Cho tam giác DEF có DE=4cm,EF=5cm,DF=6cm.trên cạnh DE lấy điểm M sao cho DM=3cm,trên cạnh DF lấy điểm N sao cho DN=2cm a,CM: DEF đồng dạng DMN b, tính MN
a) Xét ΔDEF và ΔDNM có
\(\dfrac{DE}{DN}=\dfrac{DF}{DM}\left(\dfrac{4}{2}=\dfrac{6}{3}\right)\)
\(\widehat{D}\) chung
Do đó: ΔDEF∼ΔDNM(c-g-c)
Cho Δ DEF có DE= DF.Tia phân giác của ∠D cắt EF tại I.
a) chứng minh Δ DEF=Δ DFI.
b)Kẻ IH vuông góc với DE(H ϵ DE),IK vuông góc với DF(K ϵ DF).Chứng minh IH=IK
c)Biết ∠D=3∠E. Tính số đo các góc của tam giác DEF
Cho Δ DEF có DE= DF.Tia phân giác của ∠D cắt EF tại I.
a) chứng minh Δ DEF=Δ DFI.
b)Kẻ IH vuông góc với DE(H ϵ DE),IK vuông góc với DF(K ϵ DF).Chứng minh IH=IK
c)Biết ∠D=3∠E. Tính số đo các góc của tam giác DEF
bài 1 : Cho Δ DEF = Δ MNP . Biết EF + FD = 10cm ,
NP - MP = 2cm, DE = 3cm . Tính các cạnh của mỗi tam giác
bài 2 : Cho 2 tam giác bằng nhau :Δ ABC và 1 tam giác có 3 đỉnh là M,N,P . Hãy viết kí hiệu về sự bằng nhau giữa hai tam giác trong mỗi trường hợp sau , biết :
a) ^A = ^N , ^B = ^M
b) AB= PN, BC= NM
giúp mình với ạ
1:
ΔDEF=ΔMNP
=>DE=MN; EF=NP; DF=MP
EF+FD=10; NP-MP=2; DE=3
=>MN=3cm; EF-DF=2 và EF+FD=10
=>EF=(10+2)/2=6cm và DF=6-2=4cm
EF=NP=6cm; DF=MP=4cm
2:
a: ΔABC=ΔNMP
b: ΔABC=ΔPNM
Bài 1
Do ∆DEF = ∆MNP
⇒ DE = MN; DF = MP; EF = NP
Do NP - MP = 2 (cm)
⇒ EF - FD = 2 (cm)
Lại có
EF + FD = 10 (cm)
⇒ EF = (10 + 2) : 2 = 6 (cm)
⇒ FD = 10 - 6 = 4 (cm)
Vậy độ dài các cạnh của mỗi tam giác là:
EF = NP = 6 cm
FD = MP = 4 cm
DE = MN = 3 cm
Bài 1:
Cho tam giác DEF nhọn. DE<DF, lấy M thuộc cạnh DE, N thuộc cạnh DF sao cho MN//EF. Cho biết DM=2cm, DN=3,5cm. Tính NF.
Bài 2:
Cho tam giác DEF nhọn, DE<DF. Lấy K thuộc cạnh DE, I thuộc cạnh DF sao cho KI//EF. Cho biết DK=3cm, KE=1cm, DI=4,2cm. Tính IF.
1) tam giác DEF có MN//EF
=> \(\frac{DM}{ME}=\frac{DN}{NF}=>\frac{2}{2}=\frac{3,5}{NF}=>NF=\frac{3,5.2}{2}=3,5cm\)
2)tam giasc DEF cos KI//EF
=>\(\frac{DK}{KE}=\frac{DI}{IF}=\frac{3}{1}=\frac{4,2}{IF}=IF=\frac{1.4,2}{3}=1,4cm\)
Cho tam giác DEF : DE = 4cm ; DF = 2cm. Trên cạnh DE lấy điểm H sao cho DH = 3cm. Trên cạnh DF lấy điểm I sao cho DI = 1,5 cm. Chứng minh HI // EF
Hai tam giác ABC và DEF có góc A = góc D, góc B = góc E, AB = 8cm, BC = 10cm, DE =6cm. Tính độ dài các cạnh AC, DF và EF, biết rằng cạnh AC dài hơn cạnh DF là 3cm.
Hai tam giác ABC và DEF có góc A = góc D, góc B = góc E, AB = 8cm, BC = 10cm, DE =6cm. Tính độ dài các cạnh AC, DF và EF, biết rằng cạnh AC dài hơn cạnh DF là 3cm.