Cho tam giác ABC có góc A=60;BM,CM(M thuộc AC và N thuộc AB) lần lượt là tia phân giác của góc ABC và ACB;BM và CN cắt nhau tại I.
a; Tính góc BIN
b; CM:góc INM=góc IMN
Cho tam giác ABC có góc A = 60 độ trên BC lấy M sao cho BM = 2MC và góc AMB =60 độ. tính các góc tam giác ABC
Cho tam giác ABC vuông tại A có góc B=60 °. Tia phân giác của góc ABCcho tam giác abc vuông tại a có góc b = 60 độ . tia phân giác của góc b cắt ac tại e , kẻ eh vuông góc đc tại h a) chứng minh tam giác abe = tam giác hbe b) hb=hc C) từ H kẻ đường thẳng song song với BE cắt AC ở K .c/m🔺AHK là tam giác đều d) gọi I là giao điểm của BA và HE. Chúng minh IE>EH
a: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có
BE chung
góc ABE=góc HBE
=>ΔBAE=ΔBHE
b: Xét ΔEBC có góc EBC=góc ECB
nên ΔEBC cân tại E
mà EH là đường cao
nên H là trung điểm của BC
=>HB=HC
d: Xét ΔEAI vuông tại A và ΔEHC vuông tại H có
EA=EH
góc AEI=góc HEC
=>ΔEAI=ΔEHC
=>EI=EC>EH
cho tam giác abc và tam giác a'b'c' có góc a bằng góc a' =60 độ góc c= 35độ, góc c' bằng bao nhiêu độ để tam giác abc đồng dạng với tam giác a'b'c'
cho tam giác ABC có AC =16, góc A=60, góc C=50. tính diện tích tam giác ABC
1 ) Cho tam giác ABC có góc A nhọn , AB=4 , AC=5 và diện tích tam giác ABC =8 . Tính BC
2 ) Cho tam giác ABC có AB=3 , góc ACB = 45° , góc ABC = 60° . Tính BC
em mới học lớp 7 hà
năm nay lên lớp 8 =)))))
1)Ta có: \(S_{ABC}=\dfrac{1}{2}AB.AC.\sin A\)
\(\Leftrightarrow8=\dfrac{1}{2}\times4\times5\times sinA\)
\(\Leftrightarrow\sin A=0,8\)
Lại có: \(\left(\sin A\right)^2+\left(\cos A\right)^2=1\Leftrightarrow\cos A=0,6.\)
Áp dụng định lí hàm số cosin:
\(BC^2=AB^2+AC^2-2AB\times AC\times\cos A\)
\(\Leftrightarrow BC^2=4^2+5^2-2\times4\times5\times0,6=17\)
\(\Leftrightarrow BC=\sqrt{17}.\)
2) Trong \(\Delta ABC\) có: \(g\text{ó}cA+g\text{óc}B+g\text{óc}C=180^o\)
=> BAC=75o.
Áp dụng định lí hàm số sin:
\(\dfrac{AB}{\sin C}=\dfrac{BC}{\sin A}\Leftrightarrow\dfrac{3}{\sin45^o}=\dfrac{BC}{\sin75^o}\)
\(\Leftrightarrow BC=\dfrac{3+3\sqrt{3}}{2}\).
Cho tam giác ABC vuông tại A có góc B bằng 30° và tam giác MNP vuông tại góc M có góc P bằng 60°. Chứng minh tam giác ABC đồng dạng với tam giác MNP.
Ta có: <A+<B+<C=180
90+30+<C=180
<c=180-30-90=60
Xét ▲ABC và ▲MNP ta có:
<A=<M=90
<C=<P(=60)
Do đó ▲ABC đồng dạng ▲MNP(g-g)
Cho lăng trụ tam giác ABC.A'B'C' có đáy ABC là tam giác vuông tại C, BB' = a, góc B A C ^ = 60 ∘ , đường thẳng BB' tạo với (ABC) một góc 60 ∘ , Hình chiếu vuông góc của B' lên (ABC) trùng với trọng tâm của tam giác ABC. Thể tích V của khối tứ diện A'.ABC là:
A. 1 208 a 3 .
B. 18 208 a 3 .
C. 9 208 a 3 .
D. 27 208 a 3 .
cho hai tam giác ABC , DEF có góc A=50 độ , góc E=70 độ , góc F=60 độ , AB=DE , AC=DE . Chứng minh : tam giác ABC=tam giác DEF
\(\widehat{D}=180^0-\widehat{E}-\widehat{F}=50^0=\widehat{A}\\ \left\{{}\begin{matrix}AB=DE\\\widehat{A}=\widehat{D}\\AC=DE\end{matrix}\right.\Rightarrow\Delta ABC=\Delta DEF\left(c.g.c\right)\)
Cho tam giác ABC có AB=a, góc B=60 độ, góc C=75 độ. Tính diện tích tam giác ABC
1) Cho tam giác ABC không vuông có BC= 3 cộng căn 3, góc C=60 độ, góc B=45 độ.Tính chiều cao AH và chu vi tam giác ABC.
2) Cho tam giác ABC không vuông có góc A=105 độ, góc B=45 độ,BC=4cm.TÍnh AB,AC
3) Cho tam giác ABC có góc A=60 độ, AB=28cm,AC=35cm.Kẻ Bh vuông góc với AC. Tính BH,BC.
giải giúp mình vs, 1 câu cx đc (^_^)
\(\left[{}\begin{matrix}\\\\\\\end{matrix}\right.\prod\limits^{ }_{ }\int_{ }^{ }dx\sinh_{ }^{ }⋮\begin{matrix}&&&\\&&&\\&&&\\&&&\\&&&\\&&&\end{matrix}\right.\Cap\begin{matrix}&&\\&&\\&&\\&&\\&&\\&&\end{matrix}\right.\)