Cho tam giác ABC , đường cao AD ; BE
a) CMR : tam giác EBC đồng dạng với tam giác DAC
b) tam giác CDE đồng dạng với tam giác CAB
c) Chứng minh góc AFE = góc ACB
Bài 1: Cho tam giác ABC vuông tại A, phân giác AD, đường cao AH. Biết BD = 15cm; DC = 20cm. Tính AB, AC, AH,AD.
Bài 2: Cho tam giác ABC vuông tại A, phân giác AD, đường cao AH. Biết AB=12cm; AC = 16cm. Tính HD,HB.HC.
Bài 3: Cho tam giác ABC vuông tại A, phân giác AD, đường cao AH. Biết AB=24cm; AC = 32cm. Tính HD,HB,HC.
1:
BC=15+20=35cm
AD là phân gíac
=>AB/BD=AC/CD
=>AB/3=AC/4=k
=>AB=3k; AC=4k
AB^2+AC^2=BC^2
=>25k^2=35^2
=>k=7
=>AB=21cm; AC=28cm
AH=21*28/35=16,8cm
\(AD=\dfrac{2\cdot21\cdot28}{21+28}\cdot cos45=12\sqrt{2}\left(cm\right)\)
2:
BC=căn 12^2+16^2=20cm
HB=AB^2/BC=12^2/20=7,2cm
HC=20-7,2=12,8cm
Cho tam giác ABC ; đường cao AH , vẽ AD, CK lần lượt là các đường phân giác của tam giác ABH; ABC; AD cắt CK tại E . a) chứng minh rằng tam giác ACD
Cho tam giác ABC có đường cao AD. Đường thẳng song song với BC, cắt AB,AC và đường cao AD theo thứ tự tại các điểm B',C',D'
a) chứng minh AD'/AD=B'C'/BC
b) Áp dụng: Cho biết AD'=1/3AD và diện tích tam giác ABC là 73,5cm^2. Tính diện tích tam giác AB'C'
a) Ta có: d // BC (gt)
\(\Rightarrow\)B'C' // BC, theo hệ quả của định lí Ta-lét ta có:
\(\frac{AB'}{AB}=\frac{B'C'}{BC}\)(Trong \(\Delta AB'C'\)và \(\Delta ABC\)) (1)
Và \(\frac{AB'}{AB}=\frac{AD'}{AD}\)(Trong \(\Delta AB'D'\)và \(\Delta ABD\)) (2)
Từ (1), (2) \(\Rightarrow\)\(\frac{B'C'}{BC}=\frac{AD'}{AD}\left(3\right)\)
b) Ta có: AD' = \(\frac{1}{3}\)AD (gt) (4) \(\Leftrightarrow\frac{AD'}{AD}=\frac{1}{3}\left(5\right)\)
Từ (3), (5) \(\Rightarrow\frac{B'C'}{BC}=\frac{1}{3}\Leftrightarrow B'C'=\frac{1}{3}BC\)\(\left(6\right)\)
Tích của cạnh đáy BC và đuuờng cao AD là:
\(S_{ABC}=\frac{1}{2}AD.BC\)
\(\Leftrightarrow\)73,5 \(=\frac{1}{2}AD.BC\)
\(\Leftrightarrow\)\(AD.BC=\)73,5 :\(\frac{1}{2}\)
\(\Leftrightarrow\)\(AD.BC=\)147 \(\left(7\right)\)
Diện tích tam giác AB'C' là:
\(S_{AB'C'}=\frac{1}{2}AD'.B'C'\)
Từ (4), (6) \(\Rightarrow S_{AB'C'}\)=\(\frac{1}{2}.(\frac{1}{3}.AD.\frac{1}{3}BC)\)
\(\Leftrightarrow S_{AB'C'}=\frac{1}{2}.\frac{1}{3}.\frac{1}{3}.AD.BC\)
Từ (7) \(\Rightarrow S_{AB'C'}\)\(=\frac{1}{2}.\frac{1}{3}.\frac{1}{3}.147\)
\(=\frac{49}{6}\)
Vậy \(S_{AB'C'}=\frac{49}{6}cm^2\)
cho tam giác abc, 3 đường cao AD, BE,CF. Biết AD=BE=CF. chứng minh tam giác ABC đều
a, Cho tam giác ABC vuông tại A có AB =3/5 BC . Đường cao AH =12cm . Tính chu vi tam giác ABC .
b, Cho tam giác ABC vuông tại A có đường cao AH , phân giác AD . Biết BD=15cm ,DC=20cm.Tính AH,AD
GIÚP MIK . THANKS
a, Áp dụng định lí Pytago cho tam giác ABC vuông tại A
\(AB^2+AC^2=BC^2\Rightarrow BC^2=\left(\frac{3}{5}BC\right)^2+AC^2\)
\(\Leftrightarrow AC^2=\frac{16}{25}BC^2\Leftrightarrow AC=\frac{4}{5}BC\)
* Áp dụng hệ thức :
\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Rightarrow\frac{1}{144}=\frac{1}{\frac{9}{25}BC^2}+\frac{1}{\frac{16}{25}BC^2}\)
\(\Leftrightarrow\frac{1}{144}=\frac{\frac{16}{25}BC^2+\frac{9}{25}BC^2}{\frac{16}{25}BC^2.\frac{9}{25}BC^2}\Rightarrow144BC^2=\frac{144}{625}BC^4\)
\(\Leftrightarrow\frac{144}{625}BC^2-144=0\Leftrightarrow BC^2=144.\frac{625}{144}=625\Leftrightarrow BC=25\)cm
\(\Rightarrow AB=\frac{3}{5}BC=\frac{3}{5}.25=\frac{75}{5}=15\)cm
\(\Rightarrow AC=\frac{4}{5}BC=\frac{4}{5}.25=\frac{100}{5}=20\)
Chu vi tam giác là : \(P_{ABC}=AB+BC+AB=15+20+25=60\)cm2
b, Vì AD là phân giác nên : \(\frac{AB}{AC}=\frac{BD}{DC}=\frac{15}{20}=\frac{3}{4}\Rightarrow AB=\frac{3}{4}AC\)
Lại có : \(BC=BD+DC=15+20=35\)cm
Áp dụng định lí Pytago cho tam giác ABC vuông tại A
\(BC^2=AC^2+AB^2=AC^2+\left(\frac{3}{4}AC\right)^2\)
\(\Rightarrow\frac{25}{16}AC^2=1225\Leftrightarrow AC^2=\frac{16.1225}{25}=784\Leftrightarrow AC=28\)cm
\(\Rightarrow AB=\frac{3}{4}.28=21\)cm
* Áp dụng hệ thức : \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Rightarrow\frac{1}{AH^2}=\frac{AC^2+AB^2}{AB^2AC^2}\)
\(\Leftrightarrow\frac{1}{AH^2}=\frac{784+441}{345744}\Leftrightarrow1225AH^2=345744\Leftrightarrow AH^2=\frac{7056}{25}\Leftrightarrow AH=\frac{84}{5}\)cm
* Áp dụng hệ thức : \(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{441}{35}=\frac{63}{5}\)cm
\(\Rightarrow HD=BD-BH=15-\frac{63}{5}=\frac{12}{5}\)cm
Áp dụng định lí Pytago cho tam giác AHD vuông tại H
\(AD^2=AH^2+HD^2=\left(\frac{84}{5}\right)^2+\left(\frac{12}{5}\right)^2=288\Rightarrow AD=12\sqrt{2}\)cm
cho tam giác ABC có đường cao AD,BE.Chứng minh tam giác DEC đồng dạng tam giác ABC
cho tam giác abc vuông tại a có ab=12cm ac=16cm. vẽ đường cao ah tính bc vẽ đường cao ad của tam giác abc tính bd cd
Sửa đề: AD là đường phân giác
a) Tính BC
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=12^2+16^2=400\)
hay BC=20(cm)
Vậy: BC=20cm
b) Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)(Tính chất đường phân giác của tam giác)
hay \(\dfrac{BD}{12}=\dfrac{CD}{16}\)
mà BD+CD=BC(D nằm giữa B và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{12}=\dfrac{CD}{16}=\dfrac{BD+CD}{12+16}=\dfrac{BC}{28}=\dfrac{20}{28}=\dfrac{5}{7}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{BD}{12}=\dfrac{5}{7}\\\dfrac{CD}{16}=\dfrac{5}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BD=\dfrac{60}{7}\left(cm\right)\\CD=\dfrac{80}{7}\left(cm\right)\end{matrix}\right.\)
Vậy: \(BD=\dfrac{60}{7}cm\); \(CD=\dfrac{80}{7}cm\)
Cho tam giác ABC nhon nội tiếp đường tròn O. Ba đường cao AD, BE, CF cắt nhau tại H. Cmr: Tam giác AEF đồng dạng tam giác ABC
góc BFC=góc BEC=90 độ
=>BFEC nội tiếp
=>góc AFE=góc ACB
Xét ΔAFE và ΔACB có
góc AFE=góc ACB
góc A chung
=>ΔAFE đồng dạng vơi ΔACB
Cho tam giác ABC cân tại A. D là trung điểm BC.Chứng minh AD là đường phân giác, đường cao và đường trung tuyến tam giác ABC.
Xét tam giác ABD và ACD có
AB=AC (tam giác ABC cân tại A)
Góc B = góc C ( 2 góc ở đáy của tam giác cân)
Canh AD chung
Suy ra tam giác ABD= tam giác ACD
Nen goc BAD=CAD(2 goc tuong ung)
Nên AD là tia phân giác của góc A
Suy ra AD là đường phân giác ,đường cao,đường trung trực,đường trung tuyến(tính chất tam giác cân)
Bạn tự xét tam giác ABD=tam giác ACD theo các t/c của tam giác cân rồi tự suy ra cố lên!
cho tam giác ABC AD BK CL là ccas đường cao chứng minh tam giác AKL đồng dangj vs tam giác ABC