Cho tam giác ABC. Đường thẳng qua A song song với BC cắt đường thẳng qua B song song với AC tại D. Chứng minh : AD=BC; BD=AC
Giúp mk vs!!
Cho tam giác ABC có AB lớn hơn AC tia phân giác của góc A cắt BC tại D qua B kẻ đường thẳng vuông góc với AC cắt AC tại E a Chứng minh AB =AE b qua qua e kẻ đường thẳng song song với BC cắt AD tại F kẻ đường hai đường thẳng song song với BC tại K
Gọi Bx là tia đối của tia BA. Lấy E trên AC sao cho AB = AE
Xét tam giác BAD=EAD c-g-c => BD = DE và DEC = CBx
Trong tam giác ABC, BAC + ABC + ACB = 180 => ACB = 180 - BAC - ABC => ACB < 180 - ABC
Ta có DBx + ABC = 180 (hai góc kề bù) => DBx = 180 - ABC
=>ACB < DBx => ACB < DEC => Trong tam giác DEC, DC > DE (Quan hệ giữa góc và cạnh)
Vậy BD < DC
Cho tam giác ABC vuông tại A. Đường thẳng qua B song song với AC cắt đường thẳng qua C song song với AB ở D. Chứng minh AD=BC.
Xét tứ giác ABDC có:
AB//CD
AC//BD
=> ABDC là hình bình hành
Mà \(\widehat{BAC}=90^0\)(Tam giác ABC vuông tại A)
=> ABDC là hình chữ nhật
=> AD=BC
Vì AC//BD=> BAC+ABD=180=>90+ABD=180=>ABD=90
Tương tự, vì AB//CD=> DCA=90
Tứ giác BDCA có: DBA=BAC=ACD=90
=> BDCA là hcn
=> BC=DA
Cho tam giác ABC có D là trung điểm AB. Qua D kẻ đường thẳng song song với BC cắt AC tại E, Qua E kẻ đường thẳng song song với AB cắt BC tại F. Chứng minh rằng : a) AD = EF b) AE = EC
Câu 7. Cho ABC và D là trung điểm của AB. Đường thẳng qua D và song song với BC cắt AC tại E. Đường thẳng qua E và song song với AB cắt BC tại F. a/ Chứng minh : tam giác BDF = tam giác EFD và AD = EF.
b/ Chứng minh : tam giác ADE = tam giác EFC.
c/ Chứng minh : F là trung điểm BC.
Bài1: Cho tam giác ABC đều,điểm M nằm trong tam giác ABC,đường thẳng qua M song song với AC cắt BC tại D,đường thẳng qua M song song với BC cắt AB tại E,đường thẳng qua M song song với AB cắt AC tại F . Chứng minh :
a,c/m các tứ giác BEMD,AFME,DMFC là các hình thang cân
b,độ dài 3 cạnh của tam giác bằng độ dài 3 cạnh của tam giác nào
a: MD//AC
=>góc MDB=góc ACB
=>góc MDB=60 độ
Xét tứ giác BEMD có
EM//BD
góc B=góc MDB
=>BEMD là hình thang cân
ME//BC
=>góc AEM=góc ABD=60 độ
Xét tứ giác AEMF có
MF//AE
góc A=góc MEA
=>AEMF là hình thang cân
MF//AE
=>góc CFM=góc CAB=60 độ
Xét tứ giác DCFM có
DM//FC
góc DCF=góc MFC
=>DCFM là hình thang cân
b: Sửa đề: Độ dài 3 cạnh MA,MB,MC bằng độ dài 3 cạnh của tam giác nào
AEMF là hình thang cân
=>AM=EF
BEMD là hình thang cân
=>BM=ED
FMDC là hình thang cân
=>MC=FD
=>Độ dài 3 cạnh MA,MB,MC bằng độ dài 3 cạnh của ΔEFD
Bài1: Cho tam giác ABC đều,điểm M nằm trong tam giác ABC,đường thẳng qua M song song với AC cắt BC tại D,đường thẳng qua M song song với BC cắt AB tại E,đường thẳng qua M song song với AB cắt AC tại F . Chứng minh :
a,c/m các tứ giác BEMD,AFME,DMFC là các hình thang cân
b,độ dài 3 cạnh của tam giác bằng độ dài 3 cạnh của tam giác nào
Cho tam giác nhọn ABC có AD là phân giác trong góc A (D thuộc BC). Đường thẳng qua D song song với AB cắt AC tại I, đường thẳng qua D song song với AC cắt AB tại K. Chứng minh rằng tam giác IDK là tam giác cân.
Xét tứ giác \(AIDK\):
\(AI//DK,AK//DI\)
Suy ra \(AIDK\)là hình bình hành.
mà \(AD\)là phân giác trong của góc \(\widehat{IAK}\)nên \(AIDK\)là hình thoi .
Suy ra \(DK=DI\)
do đó tam giác \(IDK\)là tam giác cân.
Cho tam giác ABC nhọn, các đường cao AD và BE cắt nhau tại H. Qua A kẻ đường thẳng song song với BC, qua B kẻ đường thẳng song song với AD, chúng cắt nhau tại M. Chứng minh: Nếu: \(AC^2=4BE.HE\) thì tam giác ABC là tam giác cân
Ta có: AEH=90⁰.
=>HAE+AHE=90⁰.(1)
Ta có: ∆BHD vuông tại D.
=>DBH+BHD=90⁰.(2)
Từ (1) và (2) suy ra: HAE+AHE=DBH+BHD=90⁰.
Mà: AHE=DBH (2 góc đối đỉnh).
=> HAE=DBH.
=>HAE=DBE.
=>∆HEA~CBE(g.g).
=>AE/BE=HE/CE.
=>BE.HE=AE.CE.=>4BE.HE=4AE.CE.=>4BE.HE=AC².
=> (AE+CE)²=4AE.CE.
=>(AE-CE)²=0.
=>AE=CE
=> E là trung điểm của AC
=> BE là đường trung tuyến của ∆ABC
Mà: BE là đường cao của ∆ABC.
=> ∆ABC cân tại B.
Cho tam giác ABC nhọn, các đường cao AD và BE cắt nhau tại H. Qua A kẻ đường thẳng song song với BC, qua B kẻ đường thẳng song song với AD, chúng cắt nhau tại M. Chứng minh: Nếu \(AC^2=4BE.HE\) thì tam giác ABC là tam giác cân