Tam giác ABC vuông tại A có AB = 20 cm ; BC = 29 cm ,giá trị của sinC là :
Tam giác ABC vuông tại A, AB = 20 cm, BC = 29 cm, ta có tanB=
A. 20 21
B. 20 29
C. 21 20
D. 21 29
Bài 1: Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AH=24 cm và HC=18 cm. Tính: BH, ,BC,AC,AB và diện tích tam giác ABC Bài 2: Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AB= 12 cm và BC=20 cm. Tính: BH, ,AC,HC,AH và diện tích tam giác ABC Bài 3: Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AB=3 cm và AC=4 cm. Tính: BH, ,BC,HC,AH và diện tích tam giác ABC Bài 4: Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AC=15 cm và AH =12 cm. Tính: BH, ,BC,AB,AH và diện tích tam giác ABC Bài 5:Cho tam giác ABC vuông tại A và có đường cao AH. Cho biết AB=20 cm và HC=9cm. Tính: BH, ,BC,AC,AH và diện tích tam giác ABC
Bài 5:
Ta có: \(AB^2=BH\cdot BC\)
\(\Leftrightarrow BH\left(BH+9\right)=400\)
\(\Leftrightarrow BH^2+25HB-16HB-400=0\)
\(\Leftrightarrow BH=16\left(cm\right)\)
hay BC=25(cm)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)
Cho 2 tam giác vuông, tam giác ABC vuông tại A và tam giác MNP vuông tại M. Bik tam giác ABC = tam giác MNP, AB=20 cm,AC=15cm.Tính các cạnh của tam giác MNP
Cho tam giác ABC có BC = 52 cm, AB = 20 cm, AC = 48 cm.
a. Tam giác ABC có vuông không?
b. Kẻ AH vuông góc với BC tại H. Tính độ dài AH.
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
b: \(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{240}{13}\left(cm\right)\)
a. Ta có: BC2=AB2+AC2, suy ra tam giác ABC vuông tại A.
b. Ta có: AB.AC=AH.BC, suy ra AH=AB.AC/BC=20.48/52=240/13.
Tam giác ABC vuông tại A có AB=10cm,AC=20=cm. Trên AC lấy M sao cho AM=5cm
A.tính độ dài BC,BM
B. Chứng minh tam giác ABC~tam giác AMB
a: \(BC=10\sqrt{5}\left(cm\right)\)
\(BM=\sqrt{10^2+5^2}=5\sqrt{5}\left(cm\right)\)
b: Xét ΔABC vuông tại A và ΔAMB vuông tại A có
AB/AM=AC/AB
nên ΔABC∼ΔAMB
Cho tam giác abc vuông tại a ,ah là đường cao của tam giác ABC AB = 15 cm AC = 20 cm BC = 25 cm tính ah
cho tam giác ABC vuông tại A có AC =20 cm kẻ AH vuông goc BC. biết BH=9 cm, HC=16cm. Tính AB,AH
vì BH=9 , HC=16
=> BC=25
xét tam giác ABC ...., ta có
BC^2=CA^2+AB^2
hay 25^2=20^2 +Ab^2
625=400 + AB^2
AB^2=225
AB=15
xét tam giác ABH...., ta có
AB^2=AH^2 + BH^2
hay 15^2= Ah^2 + 9^2
225= AH^2 +81
AH^2= 144
AH=12
thêm kl và những chỗ còn thiếu vào nhé
cho tam giác ABC vuông tại A có AC =20 cm kẻ AH vuông goc BC. biết BH=9 cm, HC=16cm. Tính AB,AH
Ta có: \(BC=BH+CH=9+16=25\)
Áp dụng định lý Py- ta - go vào \(\Delta ABC\), ta được:
\(AB^2=BC^2-AC^2\)
\(\Leftrightarrow AB^2=25^2-20^2\)
\(\Leftrightarrow AB^2=625-400\)
\(\Leftrightarrow AB^2=225\)
\(\Leftrightarrow AB=\sqrt{225}=15\)
Áp dụng định lý Py- ta - go vào \(\Delta AHC\), ta được:
\(AH^2=AC^2-CH^2\)
\(\Leftrightarrow AH^2=20^2-16^2\)
\(\Leftrightarrow AH^2=400-256\)
\(\Leftrightarrow AH^2=144\)
\(\Leftrightarrow AH=\sqrt{144}=12\)
Bài làm
BC=BH+HC=9+6=25(cm)BC=BH+HC=9+6=25(cm)
Áp dụng định lý Py-ta-go với tam giác ABC vuông tại A, ta có:
BC2=AB2+AC2BC2=AB2+AC2
⇒AB2=BC2+AC2=252−202⇒AB2=BC2+AC2=252−202
=625−400=225=152=625−400=225=152
Vậy AB=15cm
Áp dụng định lý Py-ta-go với tam giác AHC vuông tại H, ta có:
AH2=AC2−HC2=202−162=122AH2=AC2−HC2=202−162=122
Vậy AH= 12cm
# Học tốt #
Bài làm
~ Vừa rồi mik viết thiếu mũ nhá. ~
Ta có : BC = BH + HC = 9 + 16 = 25 (cm)
Tam giác ABC vuông tại A nên :
BC2 = AB2 + AC2
252 = AB2 + 162
=> AB2 = 252 - 202
AB2 = 625 - 400 = 225 = 152
=> AB = 15 (cm)
Tam giác AHC vuông tại H nên :
AC2 = AH2 + HC2
202 = AH2 + 162
=> AH2 = 202 - 162
AH = 400 - 256 = 144 = 122
=> AH = 12 (cm)
Vậy AB = 15 cm ; AH = 12 cm
# Học tốt #
cho tam giác ABC vuông tại A, AB=15 cm, AC= 20 cm, đường cao AH. Diện tích tam giác AHB=
ấn vào đúng 0
đáp án và lời giải sẽ hiện ra trước mắt