cho đa thức A=x^4-2x^3+3x-m;B=-x+3
a)tính A:B
b)tìm m để A chia hết cho B
Cho đa thức P = x^4 – 3 (x-1) + x^3 – 2x + x^2 – 1 – 2x^4
Q = -3x^2 + 2x (x+3) + 3x^4 – x(3x^2 +5 ) – 2
a) Thu gọn các đa thức trên rồi xác định hệ số cao nhất , hệ số tự do và tìm bậc của mỗi đa thức
Tìm đa thức M biết M = 3P +Q
a, \(P=-x^4+x^3+x^2-5x+2\)
hế số cao nhất 2 ; hế số tự do 2 ; bậc 4
\(Q=-3x^2+2x^2+6x+3x^4-3x^3-5x-2=3x^4-3x^3-x^2+x-2\)
hệ số cao nhất 3 ; hệ số tự do -2 ; bậc 4
b, \(M=-3x^4+3x^3+3x^2-15x+6+3x^4-3x^3-x^2+x-2=2x^2-14x+4\)
a/ Tìm số a để đa thức 2x3-3x2+x+a chia hết cho đa thức x+2
b/Tìm số a để đa thức 2x+ax+1chia đa thức x-3 dư 4
Lời giải:
Áp dụng định lý Bê-du về phép chia đa thức
a)
Số dư của phép chia đa thức \(f(x)=2x^3-3x^2+x+a\) cho $x+2$ là:
\(f(-2)=2(-2)^3-3(-2)^2+(-2)+a=-30+a\)
Để phép chia là chia hết thì số dư bằng $0$
Hay $-30+a=0$ suy ra $a=30$
b) Số dư của phép chia đa thức $f(x)=2x^2+ax+1$ cho $x-3$ là:
\(f(3)=2.3^2+3a+1=19+3a\)
Số dư bằng $4$ \(\Leftrightarrow 19+3a=4\Rightarrow a=-5\)
1.Tìm a để đa thức \(x^4-3x^3+2x^2-x+a\) chia hết cho đa thức 2x-1
Đặt phép chia ra ... ta được kết quả số dư là a - 30
Để đa thức chia hết cho 2x - 1 thì a- 30 = 0
=> a = 30
bài4: cho 3 đa thức: A(x)= 5x^3 - 2x; B(x)= 3x^2 + 2x -1 ; C(x)= 2x^3 +3x - 3x^2 +1
a) tính A(x) + B(x) B) A(x) - C(x)
c)tìm đa thức M(x) biest M(x) - B(x) = C(x) d) chứng tỏ x= 1 phần 3 là một nghiệm của đa thức B(x)
a: A(x)+B(x)
=5x^3-2x+3x^2+2x-1
=5x^3+3x^2-1
b: A(x)-C(x)
=5x^3-2x-2x^3+3x^2-3x-1
=3x^3+3x^2-5x-1
c: M(x)=B(x)+C(x)
=3x^2+2x-1+2x^3-3x^2+3x+1
=2x^3+5x
d: B(1/3)=3*1/9+2*1/3-1=1/3+2/3-1=0
=>x=1/3 là nghiệm của B(x)
Cho 2 đa thức :f (x)=3x^4+2x^2-2x^4+x^2-5x
g (x)=x^4-x^2-2x +6+3x^2
Tìm đa thức h(x) sao cho h(x )+g(x)=f(x)
Tính h (-1/3) h (3/2)
Tìm nghiệm đa thức h(x)
h(x) + g(x) = f(x)
=> h(x)= f(x) - g(x) = \(3x^4+2x^2-2x^4+x^2-5x-\left(x^4-x^2-2x+6+3x^2\right)=x^2-3x-6\)\(h\left(-\dfrac{1}{3}\right)=\left(-\dfrac{1}{3}\right)^2-3\left(-\dfrac{1}{3}\right)-6=\dfrac{-44}{9}\)
\(h\left(\dfrac{3}{2}\right)=\left(\dfrac{3}{2}\right)^2-3\cdot\dfrac{3}{2}-6=-\dfrac{33}{4}\)
\(x^2-3x-6=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3+\sqrt{33}}{6}\\x=\dfrac{3-\sqrt{33}}{6}\end{matrix}\right.\)
Cho 2 đa thức:
P(x)=-3x^2+4x-x^3+x^2+3x^4-1
Q(x)=3x^4-x^2+x^3-2x-1-2x^3
a) Thu gọn và sắp xếp các đa thức tren theo lũy thừa giửm dàn cảu biến
b) Tìm nghiệm của đa thức M(x), biết M(x)= P(x)-Q(x)
Cho hai đa thức
M(x)= x^4+3x-1/9-x+3x^4+2x^2
N(x)==8x-2x^3+2/3+4x-4x^4-1/3
a, tính nghiệm của đa thức P(x)= M(x)=N(x)
b,thu gọn và sắp xếp hai đa thức theo lũy thừa giảm dần của biến
a)\(P\left(x\right)=M\left(x\right)+N\left(x\right)\)
\(P\left(x\right)=x^4+3x-\dfrac{1}{9}-x+3x^4+2x^2+8x-2x^3+2x^3+\dfrac{2}{3}+4x-4x^4-\dfrac{1}{3}\)
\(P\left(x\right)=2x^2+\dfrac{2}{9}+14x\)
Cho đa thức P(x)= \(x^4+2x^3-2x^2+1\)
Q(x)=\(3x^4+2x^3-x^2+3\)
a) Tìm đa thức M(x) sao cho M(x)=P(x)-Q(x)
b) Chứng tỏ rằng đa thức M(x) luôn nhận giá trị âm
Cho đa thức: \(A\left(x\right)=3x^2+5x-4x^4-x^3+x^2+7\)
\(B\left(x\right)=3x^3-4x^4+8-2x^3-2x^2+x\)
a) Tìm đa thức C(x) sao cho B(x)+C(x)=A(x)
b) Tìm nghiệm của đa thức C(x)
Cho đa thức: \(A\left(x\right)=3x^2+5x-4x^4-x^3+x^2+7\)
\(B\left(x\right)=3x^3-4x^4+8-2x^3-2x^2+x\)
a) Tìm đa thức C(x) sao cho B(x)+C(x)=A(x)
b) Tìm nghiệm của đa thức C(x)
Bài này mk tl hôm bữa r mà bn đăng lại làm j???