Tìm giá trị nhỏ nhất
A=\(\frac{3x^2-6x+17}{x^2-2x+5}\);
B=\(\frac{3-4x}{x^2+1}\)
Thanks!!!
Tìm giá trị nhỏ nhất
a)\(\dfrac{\text{3x^2-2x+3}}{\text{x^2+1}}\)
b)\(\dfrac{\text{3x^2-4x+4}}{\text{x^2+2}}\)
\(a,\) Đặt \(A=\dfrac{3x^2-2x+3}{x^2+1}\Leftrightarrow Ax^2+A=3x^2-2x+3\)
\(\Leftrightarrow x^2\left(A-3\right)-2x+A-3=0\)
Coi đây là PT bậc 2 ẩn x, PT có nghiệm
\(\Leftrightarrow\Delta=4-4\left(A-3\right)^2\ge0\\ \Leftrightarrow\left(A-3\right)^2\le1\Leftrightarrow2\le A\le4\)
Vậy \(A_{min}=4\Leftrightarrow\dfrac{3x^2-2x+3}{x^2+1}=4\Leftrightarrow x=...\)
\(b,\) Đặt \(B=\dfrac{3x^2-4x+4}{x^2+2}\Leftrightarrow Bx^2+2B=3x^2-4x+4\)
\(\Leftrightarrow x^2\left(B-3\right)+4x+2B-4=0\)
Coi đây là PT bậc 2 ẩn x, PT có nghiệm
\(\Leftrightarrow\Delta=16-8\left(B-2\right)\left(B-3\right)\ge0\\ \Leftrightarrow\left(B-2\right)\left(B-3\right)\le2\\ \Leftrightarrow B^2-5B+4\le0\\ \Leftrightarrow\left(B-1\right)\left(B-4\right)\le0\\ \Leftrightarrow1\le B\le4\)
Vậy\(B_{min}=4\Leftrightarrow\dfrac{3x^2-4x+4}{x^2+2}=4\Leftrightarrow x=...\)
Bài 1:Tìm Giá trị nhỏ nhất
A=3(x+1)^2+5
B=2|x+y|+3x^2-10
C=12(x-y)^2 +x^2-6
D= -5/2^2+1
Bài 2:Tìm Giá trị lớn nhất
A=5-2x
B=3-(x+1)^2-3(x+2y)^2
C=-12-3|x+1|-2(y-1)^2
D=5/2x^2-3
F=-5/3-2x^2
Bài 1:
A = 3(x + 1)2 + 5
Ta có: (x + 1)2 \(\ge\) 0 Với mọi x
\(\Rightarrow\) 3(x + 1)2 \(\ge\) 0 với mọi x
\(\Rightarrow\) 3(x + 1)2 + 5 \(\ge\) 5 với mọi x
Hay A \(\ge\) 5
Dấu "=" xảy ra khi và chỉ khi x + 1 = 5 hay x = -1
Vậy...
B = 2|x + y| + 3x2 - 10
Ta có: 2|x + y| \(\ge\) 0 với mọi x, y
3x2 \(\ge\) 0 với mọi x
\(\Rightarrow\) 2|x + y| + 3x2 - 10 \(\ge\) -10 với mọi x,y
Dấu "=" xảy ra khi và chỉ khi x + y = 0; x = 0
\(\Rightarrow\) x = y = 0
Vậy ...
C = 12(x - y)2 + x2 - 6
Ta có: 12(x - y)2 \(\ge\) 0 với mọi x; y
x2 \(\ge\) 0 với mọi x
\(\Rightarrow\) 12(x - y)2 + x2 - 6 \(\ge\) -6 với mọi x, y
Dấu "=" xảy ra khi và chỉ khi x = y = 0
Phần D ko rõ đầu bài nha vì D luôn có một giá trị duy nhất
Bài 2:
Phần A ko rõ đầu bài!
B = 3 - (x + 1)2 - 3(x + 2y)2
Ta có: -(x + 1)2 \(\le\) 0 với mọi x
-3(x + 2y)2 \(\le\) 0 với mọi x, y
\(\Rightarrow\) 3 - (x + 1)2 - 3(x + 2y)2 \(\le\) 3 với mọi x, y
Dấu "=" xảy ra khi và chỉ khi x = 2y; x + 1 = 0
\(\Rightarrow\) x = -1; y = \(\dfrac{-1}{2}\)
Vậy ...
C = -12 - 3|x + 1| - 2(y - 1)2
Ta có: -3|x + 1| \(\le\) 0 với mọi x
-2(y - 1)2 \(\le\) 0 với mọi y
\(\Rightarrow\) -12 - 3|x + 1| - 2(y - 1)2 \(\le\) -12 với mọi x, y
Dấu "=" xảy ra khi và chỉ khi x + 1 = 0; y - 1 = 0
\(\Rightarrow\) x = -1; y = 1
Vậy ...
Phần D đề ko rõ là \(\dfrac{5}{2x^2}-3\) hay \(\dfrac{5}{2}\)x2 - 3 nữa
F = \(\dfrac{-5}{3}\) - 2x2
Ta có: -2x2 \(\le\) 0 với mọi x
\(\Rightarrow\) \(\dfrac{-5}{3}-2x^2\) \(\le\) \(\dfrac{-5}{3}\) với mọi x
Dấu "=" xảy ra khi và chỉ khi x = 0
Vậy ...
Chúc bn học tốt!
tìm giá trị lớn nhất của : \(p=\frac{3x^2-6x+17}{x^2-2x+5}\)
Tìm giá trị lớn nhất của biểu thức:
\(\frac{3x^2-6x+17}{x^2-2x+5}\)
Ta có :
\(\frac{3x^2-6x+17}{x^2-2x+5}=3+\frac{2}{x^2-2x+5}\)
Biểu thức đạt giá trị lớn nhất
<=> x2 - 2x + 5 nhỏ nhất
Ta lại có :
x2 - 2x + 5 = x2 - 2x + 1 + 4 = (x - 1)2 + 4
Vì \(\left(x-1\right)^2\ge0\)
=> \(\left(x-1\right)^2+4\ge4\)
=> \(Min=4\)
Vậy giá trị lớn nhất của biểu thức là :
\(3+\frac{2}{4}=3+\frac{1}{2}=\frac{7}{2}\)
\(\frac{3x^2-6x+17}{x^2-2x+5}=\frac{3\left(x^2-2x+5\right)+2}{x^2-2x+5}=3+\frac{2}{x^2-2x+5}=3+\frac{2}{\left(x-1\right)^2+4}\) (1)
Vì \(\left(x-1\right)^2+4\ge4\forall x\)
\(\Rightarrow\frac{2}{\left(x-1\right)^2+4}\le\frac{2}{4}=\frac{1}{2}\forall x\)
\(\Rightarrow3+\frac{2}{\left(x-1\right)^2+4}\le3+\frac{1}{2}=\frac{7}{2}\forall x\)
Dấu "=" xảy ra <=> \(x=1\)
Vậy ..........
Tìm giá trị nhỏ nhất và giá trị lớn nhất
a, A = y - 2x + 5 với 36x2 + 16y2 = 9
b, B = 2x - y - 2 với \(\dfrac{x^2}{4}+\dfrac{y^2}{9}=1\)
Lời giải:
a)
Áp dụng BĐT Bunhiacopxky:
\((y-2x)^2\leq (16y^2+36x^2)(\frac{1}{16}+\frac{1}{9})=9.\frac{25}{144}\)
\(\Rightarrow \frac{-5}{4}\leq y-2x\leq \frac{5}{4}\Rightarrow \frac{15}{4}\leq y-2x+5\leq \frac{25}{4}\)
Vậy $A_{\min}=\frac{15}{4}$ và $A_{\max}=\frac{25}{4}$
b)
Áp dụng BĐT Bunhiacopxky:
\((2x-y)^2\leq (\frac{x^2}{4}+\frac{y^2}{9})(16+9)=25\)
\(\Rightarrow -5\leq 2x-y\leq 5\Leftrightarrow -7\leq 2x-y-2\leq 3\)
Vậy $B_{min}=-7; B_{\max}=3$
Bài 1:Tìm Giá trị nhỏ nhất
A=3(x+1)^2+5
B=2|x+y|+3x^2-10
C=12(x-y)^2 +x^2-6
D= -5/2^2+1
Bài 2:Tìm Giá trị lớn nhất
A=5-2x
B=3-(x+1)^2-3(x+2y)^2
C=-12-3|x+1|-2(y-1)^2
D=5/2x^2-3
F=-5/3-2x^2
Các bạn làm được câu nào thì làm nhé còn làm được hết thì mình cảm mơn rất nhiều nha
BT1: Tìm giá trị lớn nhất của bt
a, 15 - 10x - 4x + 24xy - 16y2
b, 2x2 - 2xy + y2 - 2x +2y + 2
c, Giá trị nhỏ nhất A= \(\frac{2}{2x-5-9x^2}\)
d, GTLN A=\(\frac{3x^2-8x+6}{x^2-2x+1}\)
BT2: GTLN
A=\(\frac{3x^2+4x}{x^2+1}\)
B= \(\frac{2}{x^2-6x+17}\)
giúp vs m.n ui mai là đi hok ùi dùng phương pháp miền giá trị nha
Tìm giá trị nhỏ nhất của các biểu thức sau
E=(2x – 5)10 – 12 F=(x+5)8+|x+5|+ 22
Tìm giá trị lớn nhất của các biểu thức sau
G=17-|3x-2| K= 17-|3x-2|- (2-3x)2020
\(E=\left(2x-5\right)^{10}-12\ge-12\)
Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{5}{2}\)
Vậy \(E_{min}=-12\Leftrightarrow x=\dfrac{5}{2}\)
\(F=\left(x+5\right)^8+\left|x+5\right|+22\ge22\)
Dấu "=" xảy ra \(\Leftrightarrow x=-5\)
Vậy \(F_{min}=22\Leftrightarrow x=-5\)
\(G=17-\left|3x-2\right|\)
Dấu "=" xảy ra \(x=\dfrac{2}{3}\)
Vậy \(G_{max}=17\Leftrightarrow x=\dfrac{2}{3}\)
\(K=17-\left|3x-2\right|-\left(2-3x\right)^{2020}\le17\)
Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{2}{3}\)
Vậy \(K_{max}=17\Leftrightarrow x=\dfrac{2}{3}\)
Bài 1:Tìm giá trị nhỏ nhất của các biểu thức sau:
F= (3x^2-6x+17)/(x^2-2x+5)
H= (x^2-4x+1)/x^2
Bài 2:Tìm GTNN và GTLN cua biểu thức sau:
D= (3x^2-2x+3)/(x^2+4)