Cho 2 số nguyên :
A=(x+y) - (z+t);
B=(x-z) + (y-t).
Hãy so sánh A và B.
a) Tìm số nguyên a để \(\frac{a^2+a+3}{a+1}\) là số nguyên
b) Tìm số nguyên x,y sao cho x - 2xy +y = 0. Cho \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\) .
CMR biểu thức sau có giá trị nguyên \(P=\frac{x+y}{z+t}+\frac{y+z}{t+x}+\frac{z+t}{x+y}+\frac{t+x}{y+z}\)
a)\(\frac{a^2+a+3}{a+1}=\frac{a\left(a+1\right)+3}{a+1}=\frac{a\left(a+1\right)}{a+1}+\frac{3}{a+1}=a+\frac{3}{a+1}\in Z\)
\(\Rightarrow3⋮a+1\)
\(\Rightarrow a+1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
\(\Rightarrow a\in\left\{0;-2;2;-4\right\}\)
b) Phần 1
\(x-2xy+y=0\)
\(\Rightarrow2x-4xy+2y=0\)
\(\Rightarrow2x-4xy+2y-1=-1\)
\(\Rightarrow2x\left(1-2y\right)-\left(1-2y\right)=-1\)
\(\Rightarrow\left(2x-1\right)\left(1-2y\right)=-1\)
Lập bảng xét Ư(-1)={1;-1}
Phần 2:
\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)
\(\Leftrightarrow\frac{x}{y+z+t}+1=\frac{y}{z+t+x}+1=\frac{z}{t+x+y}+1=\frac{t}{x+y+z}+1\)
\(\Leftrightarrow\frac{x+y+z+t}{y+z+t}=\frac{y+z+t+x}{z+t+x}=\frac{z+t+x+y}{t+x+y}=\frac{t+x+y+z}{x+y+z}\)
+)XÉt \(x+y+z+t\ne0\) suy ra \(x=y=z=t\), Khi đó \(P=1+1+1+1=4\)
+)Xét \(x+y+z+t=0\) suy ra x+y=-(z+t); y+z=-(t+x); (z+t)=-(x+y); (t+x)=-(y+z)
Khi đó \(P=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)
Vậy P có giá trị nguyên
Bài 1: Tìm số nguyên χ biết:
a) (χ+3)(χ+2)=0
b) (7-3χ)3=(-8)
Bài 2: Tìm tất cả các số nguyên x;y;z;t biết:
|x+y+z+9|=|y+z+t+6|=|z+t+x-9|=|t+x+y-6|=0
Bài 3: Tìm ba cặp số nguyên (a;b) sao cho 20a+10b=2010
Bài 1
a) (x + 3)(x + 2) = 0
x + 3 = 0 hoặc x + 2 = 0
*) x + 3 = 0
x = 0 - 3
x = -3 (nhận)
*) x + 2 = 0
x = 0 - 2
x = -2 (nhận)
Vậy x = -3; x = -2
b) (7 - x)³ = -8
(7 - x)³ = (-2)³
7 - x = -2
x = 7 + 2
x = 9 (nhận)
Vậy x = 9
Bài 3
20a + 10b = 2010
10b = 2010 - 20a
b = (2010 - 20a) : 10
*) a = 0
b = (2010 - 20.0) : 10 = 201
*) a = 1
b = (2010 - 10.1) : 10 = 200
*) a = 2
b = (2010 - 10.2) : 10 = 199
Vậy ta có ba cặp số nguyên (a; b) thỏa mãn:
(0; 201); (1; 200); (2; 199)
Cho x,y,z,t > 0 CMR A ko phải là số nguyên biết: A = x/x+y+z + y/y+z+t + z/z+t+x + t/t+x+y
cho x,y,z,t là các số nguyên dương thỏa mãn x^2+z^2=y^2+t^2 CMR : x+y+z+t chia hết cho 2
A : Tìm số nguyên b lớn nhất sao cho b^300<5^400
B : cho x/y=y/z=z/t=t/x tính M = (x+y) (y+2) (z+t) (t+x)/ x.y.z.t
mấy chỗ / là dấu gạch phân số
giúp mình với
cho x+y+z+t khác o thỏa mãn x/(y+z+t)+y/(x+t+z)+z/(t+x+y)+t/(x+y+z) chứng minh rằng biểu thức A=x+y/z+t +y+z/t+x z+t/x+y+t+x/x+y có giá trị là 1 số nguyên
cho x y z t nguyên dương thỏa mãn x^2+z^2=y^2+t^2 chứng minh x+y+z+t là hợp số
jup mik vs
đề bài phải là x,y,z,t nguyên dương.
Vì nếu cho x=z=1;y=t=0 thì thỏa mãn: x²+y²=z²+t²
nhưng x+y+z+t = 2 là số nguyên tố.
với x,y,z,t là số nguyên dương => x+y+z+t >=4
giả sử x+y+z+t là số nguyên tố
ta có x+y+z+t >= 4 => x+y+z+t lẽ
=> trong x,y,z,t có một số lẽ số lẽ ( 1 hoặc 3 số lẽ )
* trường hợp 1: có 1 số lẽ, giả sử là x => x²+y² lẽ , còn z²+t² chẳn, vô lý vì chúng bằng nhau
* trường hợp 2: có 3 số lẽ, 1 số chẳn, giả sử x chẳn. => x²+y² lẽ , còn z²+t² chẳn, vô lý.
mọi trường hợp đều dẫn kết điều mâu thuẩn , vậy giả thiết phản chứng là sai và bài toán được chứng minh.
Cho x, y, z, t là các số nguyên dương thỏa mãn đẳng thức: \(x^2+z^2=y^2+t^2.\)Chứng minh rằng: x + y + z + t là hợp số
Ta có:x2 + z2 = y2 + t2
Xét P = (x2 + z2 + y2 + t2) - (x + z + y + t)
= (x2 - x) + (z2 - z) + (y2 - y) + (t2 - t)
= x(x - 1) + z(z -1) + y(y -1) + t(t -1) chia hết cho 2
(Vì tích của 2 số nguyên liên tiếp luôn chia hết cho 2)
Thay x2 + z2 = y2 + t2 vào P ta được:
P = 2(x2 + z2) - (x + y + z + t) chia hết cho 2
Mà 2(x2 + z2) chia hết cho 2
=>x + y +z + t chia hết cho 2
Vì x,y,z,t nguyên dương nên x + y + z + t > 2
Suy ra x + y + z + t là hợp số
Chúc bn hc tốt
Chúc bn ăn Tết vui vẻ
a)CHO \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)
Chứng minh biểu thức sau: \(M=\frac{x+y}{z+t}+\frac{y+z}{t+x}+\frac{z+t}{x+y}+\frac{t+x}{y+z}\)
Có giá trị là số nguyên.
b) Tìm 2 số dương biết tổng , hieuj , tích của chúng lần lượt tỉ lệ nghịch với ba số 20, 120, 16
cậu giải từng ý cho mik cũng được ko phai giải 2 cÁI 1 LÚC ĐÂU
Cho x/y+z+t=y/x+z+t=z/x+y+t=t/x+y+z. Chứng minh x+y/z+t+y+z/t+x+z+t/x+y+t+x/y+z có giá trị là một số nguyên