Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngọc Quỳnh
Xem chi tiết
Lê Chí Cường
1 tháng 9 2015 lúc 20:55

\(ad=bc=>ad:dc=bc:dc=>\frac{ad}{dc}=\frac{bc}{dc}=>\frac{a}{c}=\frac{b}{d}\)

Nguyễn Ngọc Như Huyền
1 tháng 9 2015 lúc 20:57

nếu a/c=b/d thì a.d/cd=bc/cd=>ad=bcthí a/c=b/d

Đinh Tuấn Việt
1 tháng 9 2015 lúc 20:57

\(ad=bc\)

\(\Rightarrow ad:cd=bc:cd\) (hai số bằng nhau cùng chia cho một số thì vẫn bằng nhau)

\(\Leftrightarrow\frac{ad}{cd}=\frac{bc}{cd}\)

Từ đó ta có tỉ lệ thức \(\frac{a}{c}=\frac{b}{d}\)

Vananh Vu
Xem chi tiết
trần trang
Xem chi tiết
SigMa
Xem chi tiết
gãi hộ cái đít
4 tháng 3 2021 lúc 5:37

giả sử a\(\ge\)b

Khi đó \(\dfrac{a-b}{2}>0\)

Vì a<b+c với mọi c>0 nên \(c=\dfrac{a-b}{2}\)

Ta có: \(a\le b+\dfrac{a-b}{2}\) hay a<b ( mâu thuẫn )

=> giả sử a\(\ge\)b là sai 

Vậy \(a\le b\)

nguyễn ngọc thúy vi
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 4 2019 lúc 15:21

\(\frac{sin4x-sin2x}{1-cos2x+cos4x}=\frac{2sin2x.cos2x-sin2x}{1-cos2x+2cos^22x-1}=\frac{sin2x\left(2cos2x-1\right)}{cos2x\left(2cos2x-1\right)}=\frac{sin2x}{cos2x}=tan2x\)

\(\Rightarrow\) đề sai

b/

\(\frac{1-cos4x}{sin4x}=\frac{1-\left(1-2sin^22x\right)}{2sin2x.cos2x}=\frac{2sin^22x}{2sin2x.cos2x}=\frac{sin2x}{cos2x}=tan2x\)

Đề sai tiếp lần 2

Mai Mèo
Xem chi tiết
Nguyễn Thanh Hằng
27 tháng 9 2017 lúc 20:44

Ta có :

\(ad=bc\left(1\right)\)

Chia cả 2 vế của \(\left(1\right)\) cho \(bd\) ta được :

\(VT=\dfrac{ad}{bd}=\dfrac{a}{b}\left(2\right)\)

\(VP=\dfrac{bc}{bd}=\dfrac{c}{d}\left(3\right)\)

Từ \(\left(2\right)+\left(3\right)\Leftrightarrowđpcm\)

Trần Minh An
27 tháng 9 2017 lúc 20:45

Từ có đẳng thức: \(ad=bc\)

\(\Rightarrow\dfrac{ad}{cd}=\dfrac{bc}{cd}\) \(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\) (đpcm)

Minh Anh Vũ
Xem chi tiết
Nguyễn Hoàng Minh
20 tháng 8 2021 lúc 16:18

\(\dfrac{\sqrt{a}+\sqrt{b}}{2\sqrt{a}-2\sqrt{b}}-\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{a}+2\sqrt{b}}-\dfrac{2b}{b-a}\left(a,b>0;a\ne b\right)\\ =\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2-\left(\sqrt{a}-\sqrt{b}\right)^2+4b}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\\ =\dfrac{4\sqrt{ab}+4b}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\\ =\dfrac{4\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\dfrac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}\)

Tick plz

Nguyễn Lê Phước Thịnh
20 tháng 8 2021 lúc 22:58

Ta có: \(\dfrac{\sqrt{a}+\sqrt{b}}{2\sqrt{a}-2\sqrt{b}}-\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{a}+2\sqrt{b}}-\dfrac{2b}{b-a}\)

\(=\dfrac{a+2\sqrt{ab}+b-a+2\sqrt{ab}-b+4b}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\dfrac{4b+4\sqrt{ab}}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\dfrac{4\sqrt{b}\left(\sqrt{b}+\sqrt{a}\right)}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{b}+\sqrt{a}\right)}\)

\(=\dfrac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}\)

Huy Hoàng
Xem chi tiết
Phùng Quang Thịnh
21 tháng 7 2017 lúc 7:40

- Theo đề bài :
\(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)
=) \(\frac{b}{ab}-\frac{a}{ab}=\frac{1}{a-b}\)
=) \(\frac{b-a}{ab}=\frac{1}{a-b}\)=) \(\left(b-a\right).\left(a-b\right)=ab\)
Mà vế trái sẽ mang dấu âm còn vế phải mang dấu dương
Mà số âm khác số dương
=)\(\left(b-a\right).\left(a-b\right)\ne ab\)
=) \(\frac{1}{a}-\frac{1}{b}\ne\frac{1}{a-b}\)
=)  Không tồng tại hai số a,b ( \(a,b\in N,a\ne b\)) thỏa mãn đẳng thức : \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)
=) Đpcm

Nhi Quỳnh
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 12 2023 lúc 13:14

\(\dfrac{\sqrt{a}-2}{a+2\sqrt{a}}+\dfrac{8}{a-4}\)

\(=\dfrac{\sqrt{a}-2}{\sqrt{a}\left(\sqrt{a}+2\right)}+\dfrac{8}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)

\(=\dfrac{\left(\sqrt{a}-2\right)^2+8\sqrt{a}}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)\cdot\sqrt{a}}\)

\(=\dfrac{\left(\sqrt{a}+2\right)^2}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)\cdot\sqrt{a}}=\dfrac{\sqrt{a}+2}{\sqrt{a}\left(\sqrt{a}-2\right)}\)

\(=\dfrac{\sqrt{a}+2}{a-2\sqrt{a}}\)