Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vuugia
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 10 2021 lúc 23:18

a: Xét (O) có 

CM là tiếp tuyến có M là tiếp điểm

CA là tiếp tuyến có A là tiếp điểm

Do đó: CM=CA
Xét (O) có

DM là tiếp tuyến có M là tiếp điểm

DB là tiếp tuyến có B là tiếp điểm

Do đó: DM=DB

Ta có: CM+MD=CD

mà CM=CA

và DM=DB

nên CD=CA+DB

Hồng Hạnh
Xem chi tiết
Ctuu
Xem chi tiết
Bùi Thị Bích Quyền
Xem chi tiết
Minh Bình
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 10 2023 lúc 21:08

a: Xét hình thang AHKB có

O là trung điểm của AB

OM//AHKB

Do đó: M là trung điểm của HK

b: Kẻ MN vuông góc với AB

Xét tứ giác AHMN có \(\widehat{AHM}+\widehat{ANM}=180^0\)

=>AHMN là tứ giác nội tiếp

=>\(\widehat{MAN}=\widehat{MHN}\)

Xét tứ giác MNBK có \(\widehat{MNB}+\widehat{MKB}=180^0\)

=>MNBK nội tiếp

=>\(\widehat{MBN}=\widehat{MKN}\)

Xét (O) có

ΔMAB nội tiếp

AB là đường kính

Do đó: ΔMAB vuông tại M

=>\(\widehat{MAB}+\widehat{MBA}=90^0\)

=>\(\widehat{NHK}+\widehat{NKH}=90^0\)

=>ΔNKH vuông tại N

ΔNKH vuông tại N có NM là trung tuyến

nên MH=MN

Xét (M) có

MN là bán kính

AB vuông góc MN tại N

Do đó: AB là tiếp tuyến của (M)

=>ĐPCM

Vũ Phương Linh
Xem chi tiết
Nguyễn Ngọc Anh Minh
30 tháng 11 2023 lúc 10:49

A B H M O D I K

a/

Ta có \(\widehat{AMB}=90^o\) (góc nt chắn nửa đường tròn)

Xét tg vuông AMB có

\(MH^2=AH.BH\) (trong tg vuông bình phương đường cao hạ từ đỉnh góc vuông xuống cạnh huyền = tích giữa các hình chiếu của 2 cạnh góc vuông trên cạnh huyền)

\(\Rightarrow BH=\dfrac{MH^2}{AH}=\dfrac{4^2}{2}=8cm\)

\(\Rightarrow AB=AH+BH=2+8=10cm\)

\(MA^2=AH.AB\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

\(\Rightarrow MA=\sqrt{AH.AB}=\sqrt{2.10}=2\sqrt{5}cm\)

\(MB^2=BH.AB\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

\(\Rightarrow MB=\sqrt{BH.AB}=\sqrt{8.10}=4\sqrt{5}cm\)

b/ Không rõ bạn hỏi biểu thức nào?

c/

Ta có \(OD\perp AM\) (2 tiếp tuyến cùng xuất phát từ 1 điểm ngoài hình tròn thì đường nối điểm đó với tâm đường tròn vuông góc với dây cung nối 2 tiếp điểm)

Xét tg vuông AIO 

Gọi K là trung điểm của AO => AK=OK

\(\Rightarrow IK=AK=OK=\dfrac{1}{2}AO\) không đổi (trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)

Ta có

A; O cố định => K cố định; IK không đổi => khi M di chuyển trên nửa (O) => I chạy trên nửa đường tròn tâm K

 

 

 

 

17Mạc Xuân Lam 8/5
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 6 2023 lúc 22:43

a: Xét ΔMAO và ΔMCO có

MA=MC

AO=CO

MO chung

=>ΔMAO=ΔMCO

=>góc MCO=90 độ

góc MAO+góc MCO=180 độ

=>MAOC nội tiếp đường tròn đường kính MO

=>I là trung điểm của MO

b: góc MCO=90 độ

=>MC là tiếp tuyến của (O)

Xét ΔMCD và ΔMBC có

góc MCD=góc MBC

góc CMD chung

=>ΔMCD đồng dạng với ΔMBC

=>MC/MB=MD/MC

=>MC^2=MB*MD

Lương Hoàng Bách
Xem chi tiết
Do Tuan
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 12 2021 lúc 20:01

2: Xét tứ giác BDMO có 

\(\widehat{DBO}+\widehat{DMO}=180^0\)

Do đó: BDMO là tứ giác nội tiếp