cho hcn ABCD, kẻ AH vuông góc với BD tại H. E; F lần lượt là hình chiếu của H trên AB;AD. Gọi K,M lần lượt là trung điểm của HD,BC và I là giao điểm của AH với EF.cmr:AH^3=BE.BD.DF
Cho hcn abcd. Kẻ ah vuông góc bd(h thuộc bd). Tia phân giác của góc adb cất ah và ab lần lượt tại m và k. Chưng minh ak^2=bk.hm
cho hcn ABCD, đường chéo BD, từ A kẻ AH vuông góc DB tại H. Phân giác góc BAC, DAH cắt BC,BD tại F và E.
a) CM tam giác AHB đồng dạng tam giác BCD
b) HE.DF=BF.DE
Cho hình chữ nhật ABCD, kẻ AH vuông góc với BD, trên tia đối của tia DA lấy E sao cho ED<EA , kẻ EM vuông góc với BD, EM cắt AB tại N, kẻ AO vuông góc với ND, AK vuông góc với BE. CM: O,H,K thẳng hàng
cho hcn ABCD 2 đường chéo AC và BD cắt nhau tại O.Qua D kẻ đường thẳng vuông góc với BD tại D và cắt đường thẳng BC tại E
a,CM tam giác BDE đồng dạng với tam giác DCE
b,kẻ CH vuông góc với DE tại H .CMR DC bình =CH.DB
c,CM ba đường OE,CD,BH đồng quy tại O
a: Xét ΔBDE vuông tại D và ΔDCE vuông tại C có
góc E chung
=>ΔBDE đồng dạng với ΔDCE
b: Xét ΔHCD vuông tại H và ΔDEB vuông tại D có
góc HCD=góc DEB
=>ΔHCD đồng dạng với ΔDEB
=>DH/DB=CH/DE
=>DH*DE=DB*CH
=>DB*CH=DC^2
1.Cho hình bình hành ABCD đường chéo lớn BD qua A kẻ đường thẳng cắt BD và BC tại E và F cắt tia DC tại K.
a)chứng minh AE2 =EF.EK
b)kẻ AH vuông góc với BD tại H,HM vuông góc với AB tại M.Chứng minh AH2 =AM.CD
c)Kẻ BI vuông góc với CD,BK vuông góc với AD.Chứng minh:AD.CI+DC.DN=BD2
cho hcn ABCD có AB>BC, kẻ AG vuông góc BD. Phân giác góc ABD cắt AD tại I và phân giác góc DAH vắt BD tại K
CM: IK//AH
Bài 1 : Cho hình thang ABCD có độ dài đáy AB bằng 5cm, CD 15cm, đường chéo DB 12cm, AC 16cm. Từ A kẻ đường thẳng song song với BD cắt đường thẳng CD tại E
a. Cm tam giác AEC vuông
b. Tính diện tích hình thang ABCD
Bài 2 : Cho hình chữ nhật ABCD. Qua A kẻ đường thẳng vuông góc đường chéo BD tại H. Biết rằng AB bằng 20cm, AH bằng 12cm. Tính chu vi HCN ABCD
cho hcn ABCD, kẻ AH vuông góc với BD. Tính SABCD biết BD=4cm và ABD=15