Cho hình bình hành ABCD có 2AB=BC=2a, góc B =60 độ . Gọi M,N lần lượt là trung điểm của AD và BC
a) Tứ giác AMNB là hình gì ? Vì sao ?
b) CMR : An vuông góc với ND ; AC=ND
c) Tính diện tích của tứ giác AMNB và tam giác AND theo a
Cho hình bình hành ABCD có 2 AB=BC=2a,góc B=60 độ .Gọi M,N lần lượt là trung điểm của AD và BC
a)Tứ giác AMNB là hình gì ?Vì sao?
b)Chứng minh AN vuông góc với ND ,AC=ND
a: Xét tứ giác AMNB có
AM//NB
AM=NB
Do đó: AMNB là hình bình hành
mà AM=AB
nên AMNB là hình thoi
b: Xét tứ giác MDCN có
MD//CN
MD=CN
Do đó; MDCN là hình bình hành
mà DM=DC
nên MDCN là hình thoi
=>MD=NM
mà NM=AM
nên NM=AM=MD
=>NM=AD/2
Xét ΔAND có
NM là đường trung tuyến
NM=AD/2
Do đó: ΔAND vuông tại N
Cho hình bình ABCD có 2AB=BC=2a,góc b=60o. Gọi M,N lần lượt là trung điểm của AD,BC.
a)Tứ giác AMNB là hình gì?
b)Chứng minh rằng: ANvuoong góc với ND, AC=ND
c)TÍnh diện tích tứ giác AMNB và tam giác AND theo a
cho tứ giác ABCD là hình bình hành, góc B = 60 độ , BC=2AB , gọi M và N lần lượt là trung điểm của AD và BC
a) CM tứ gisc AMNB và MNCD là hình thoi
b) tứ giác ANCD là hình j , vì sao
Cho hình bình hành ABCD có 2AB = BC = 2a, B ˆ 60 đọ. Gọi M, N lần
lƣợt là trung điểm của AD và BC.
a) Tứ giác AMNB là hình gì ? Vì sao?
b) Chứng minh rằng: AN_I_ ND ; AC = ND
c) Tính diện tích của tứ giác AMNB và tam giác AND theo a.
Mn lm giúp mk câu c thôi vs
a: Xét tứ giác AMNB có
BN//AM
BN=AM
Do đó: AMNB là hình bình hành
mà BN=AB
nên AMNB là hình thoi
Cho hình bình hành ABCD có BC = 2AB và góc A = 60 độ. Gọi E, F lần lượt là trung điểm của BC, AD và I là điểm đối xứng của A qua B. a) Tứ giác ABEF là hình gì? Vì sao. b) cmr IE=AF.c)cho AB=10cm tính diện tích tam giác BIC
a: Xét tứ giác ABEF có
BE//AF
BE=AF
BE=BA
Do đó: ABEF là hình thoi
b: Xét ΔIBE có IB=BE và góc IBE=60 độ
nên ΔIBE đều
=>IE=BE=AF
Cho hình bình hành ABCD có AD = 2AB, góc A=60 độ. Gọi E, F lần lượt là trung điểm của các cạnh BC và AD
a) Tứ giác ABEF là hình gì? Vì sao?
b) Chứng minh BFDC là hình thang cân.
c) Tính góc ADB
a: Xét tứ giác ABEF có
AF//BE
AF=BE
Do đó: ABEF là hình bình hành
mà AB=AF
nên ABEF là hình thoi
1,Cho hbh ABCD có BC=2AB,góc B = 60°.Gọi M,N lần lượt là trung điểm của AD và BC.Gọi I là điểm đối xứng của B qua A .Vẽ hình
a,Tứ giác AMNB là hình j?Vì sao
b,Cminh:AN Vuông góc với ND
c,T/g ACDI là hình j?Vì sao
2,Cho▲ABC vuông tại A,M là tđ của BC.kẻ MD vuông góc AB (D thuộc AB),ME vuông góc AC (E thuộc AC). Vẽ hình
a,T/g ADME là hìng j?Vì sao
b▲ABC có điều kiện j thì t/g ADME là hình vuông
3,Phân tích đa thức
ab(a+b)-bc(b+c)-ac(c-a)
2:
a: Xét tứ giác ADME có
\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)
=>ADME là hình chữ nhật
b: Hình chữ nhật ADME trở thành hình vuông khi AM là phân giác của góc BAC
Xét ΔABC có
AM là đường trung tuyến
AM là đường phân giác
Do đó: ΔABC cân tại A
=>AB=AC
3:
\(ab\left(a+b\right)-bc\left(b+c\right)-ac\left(c-a\right)\)
\(=a^2b+ab^2-b^2c-bc^2+ac\left(a-c\right)\)
\(=\left(a^2b-bc^2\right)+\left(ab^2-b^2c\right)+ac\left(a-c\right)\)
\(=b\left(a^2-c^2\right)+b^2\left(a-c\right)+ac\left(a-c\right)\)
\(=b\left(a-c\right)\left(a+c\right)+\left(a-c\right)\left(b^2+ac\right)\)
\(=\left(a-c\right)\left(ba+bc+b^2+ac\right)\)
\(=\left(a-c\right)\left[\left(ba+b^2\right)+\left(bc+ac\right)\right]\)
\(=\left(a-c\right)\left[b\left(a+b\right)+c\left(a+b\right)\right]\)
1:
a: Ta có: ABCD là hình bình hành
=>AD=BC(1)
Ta có: M là trung điểm của AD
=>\(MA=MD=\dfrac{AD}{2}\left(2\right)\)
Ta có:N là trung điểm của BC
=>\(NB=NC=\dfrac{BC}{2}\)(3)
Từ (1),(2),(3) suy ra AM=MD=CN=NB
Xét tứ giác AMNB có
AM//NB
AM=NB
Do đó: AMNB là hình bình hành
Hình bình hành AMNB có AM=AB(=AD/2)
nên AMNB là hình thoi
b: Ta có: AMNB là hình thoi
=>MN=AM
mà \(AM=\dfrac{AD}{2}\)
nên \(NM=\dfrac{AD}{2}\)
Xét ΔNAD có
NM là đường trung tuyến
\(NM=\dfrac{AD}{2}\)
Do đó: ΔNAD vuông tại N
=>AN\(\perp\)ND
c:
Ta có: AB=DC
AB=AI
Do đó: DC=AI
Ta có: AB//DC
I\(\in\)AB
Do đó: IA//DC
Xét ΔABN có BA=BN(=BC/2) và \(\widehat{B}=60^0\)
nên ΔBAN đều
=>\(AN=BN=\dfrac{BC}{2}\)
Xét ΔBAC có
AN là đường trung tuyến
\(AN=\dfrac{BC}{2}\)
Do đó: ΔBAC vuông tại A
=>BA\(\perp\)AC
=>CA\(\perp\)AI
Xét tứ giác AIDC có
AI//DC
AI=DC
Do đó: AIDC là hình bình hành
Hình bình hành AIDC có \(\widehat{IAC}=90^0\)
nên AIDC là hình chữ nhật
Cho hình bình hành ABCD có BC=2AB , góc A=60 độ . Gọi E , F lần lượt là trung điểm của BC , AD
a) Tứ giắc ABED là hình gì ? Vì sao ?
b) tính góc AED
a: Xét tứ giác ABED có
BE//AD
Do đó:ABED là hình thang
b: Xét tứ giác ABEF có
AF//BE
AF=BE
Do đó: ABEF là hình bình hành
mà AB=AF
nên ABEF là hình thoi
SUy ra: EF=AF=AD/2
Xét ΔEAD có
EF là đường trung tuyến
EF=AD/2
Do đó: ΔEAD vuông tại E
hay \(\widehat{AED}=90^0\)
Cho hình bình hành ABCD có BC = 2AB và góc A = 600. Gọi E, F theo thứ tự là trung điểm của BC, AD. a) Chứng minh AE vuông góc với BF b) Tứ giác ECDF là hình gì ? Vì sao? c) Tứ giác ABED là hình gì ? Vì sao? d) Gọi M là điểm đối xứng của A qua B. C/ minh tứ giác BMCD là hình chữ nhật. e) Chứng minh 3 điểm M, E, D thẳng hàng Giúp mình với ạ!!!
b: Xét tứ giác ECDF có
DF//EC
DF=EC
Do đó: ECDF là hình bình hành
mà DF=DC
nên ECDF là hình thoi