Hình học lớp 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phương Nhi

Cho hình bình hành ABCD có 2AB=BC=2a, góc B =60 độ . Gọi M,N lần lượt là trung điểm của AD và BC

a) Tứ giác AMNB là hình gì ? Vì sao ?

b) CMR : An vuông góc với ND ; AC=ND

c) Tính diện tích của tứ giác AMNB và tam giác AND theo a

Đào Thị Huyền
3 tháng 12 2017 lúc 10:08

B A C D N M O 60* a

a) tứ giác AMNB

có BN // AM (BC // AD)

BN = AM (BC=AD, N;M là Tđiểm BC;AD)

=> AMNB là HBH

2AB = AD, 2AM = AD => AM =AB

=> AMNB là HThoi ( vì là HBH có 2 cạnh kề = nhau )

b) AMNB là Hthoi

=> AN là tia Phân giác của ^BNM

^BNM = 120* (là góc TCP vs ^B)

=> ^ANM = ^BNM /2 = 120*/2 = 60*

t/ tự ta có MNCD là Hthoi

=> ND là tia Phân giác của ^MNC

^MNC = 60* (là góc TCP vs ^NCD, mà ^NCDlà góc TCP vs ^B)

=> ^MND = ^MNC/2 = 30*

có ^AND = ^ANM + ^MND = 60* + 30* = 90*

=> AN vuông vs N

tam giác BAN cân tại B ( AB = BN t/c Hthoi )

^B =60* (gt)

=> tg BAN đều

=> AN = BA

AB = CD (t/c HBH )

=> AN = CD

^ANC = ^ANM + ^MNC , ^MNC =60*= ^B (2 góc đồng vị)

=> ^ANC = 60* +60* =120*

xét tg ANC và tg NCD

có NC chung

^ANC = ^NCD (=120*)

AN = CD (cmt)

=> tg ANC = tg NCD (cgc)

=> AC = ND ( 2 cạnh t/ứ)

c) gọi O là giao cuả BM và AN

có AMNB là Hthoi (cm câu a)

=> BM vuông vs AN (t/c Hthoi)

BM cắt AN tại trung điểm mỗi đường

=> O là trung điểm AN

có tam giác BAN đều (cm câu b)

=> AN = AB = a

mà O là trung điểm AN (cmt).

=> AO = ON = AN/2 = a/2

xét tg BON vuông tại O

\(BO^2+ON^2=BN^2=>BO^2=BN^2-ON^2=a^2-\left(\dfrac{a}{2}\right)^2=\dfrac{3a^2}{4}=>BN=\dfrac{\sqrt{3}a}{2}\)

có O là trung điểm BM (T/C Hthoi )

=> BM = 2BO = 2\(\dfrac{\sqrt{3}a}{2}\)=\(\sqrt{3}a\)

S Hthoi ABMN = \(\dfrac{1}{2}AN.BM=\dfrac{1}{2}a.\sqrt{3}a=\dfrac{a^2\sqrt{3}}{2}\)

xét tứ giác AMDN có BN // MD, BN = MD =a

=> AMDN là HBH

=> BM = ND ( t/c HBH )

=> ND = \(\sqrt{3}a\)

S tam giác AND = \(\dfrac{1}{2}AN.ND=\dfrac{1}{2}a.\sqrt{3}a=\dfrac{a^2\sqrt{3}}{2}\)


Các câu hỏi tương tự
Nguyệt Trần
Xem chi tiết
Phan Ngọc Thùy Linh
Xem chi tiết
Phan Ngọc Thùy Linh
Xem chi tiết
Pun Cự Giải
Xem chi tiết
Đào Nguyễn Hồng Ngọc
Xem chi tiết
Đỗ Thanh Huyền
Xem chi tiết
Pun Cự Giải
Xem chi tiết
Thư Vũ
Xem chi tiết
hoàng hải anh
Xem chi tiết