Cho tam giác ABC có: AB=3cm; AC=4cn; BC=5cm . Gọi m là trung của BC. Kẻ ME vuông góc với AB tại E, MF vuông góc với AC tại F. a, CM: Góc EMF=90 độ và AM=EF. b, Tính ME,MF,EF,AM.
1) Cho tam giác ABC vuông tại A có góc B = 60độ, AC = 3cm. Tính BC, AB
2) Cho tam giác ABC vuông tại A có BC = 10cm, góc C = 3cm. Tính góc B, AB, AC
3) Cho tam giác ABC vuông tại A có AB = 4cm, góc B = 50 độ. Tính BC, góc C, AC
3:
góc C=90-50=40 độ
Xét ΔABC vuông tại A có sin C=AB/BC
=>4/BC=sin40
=>\(BC\simeq6,22\left(cm\right)\)
\(AC=\sqrt{BC^2-AB^2}\simeq4,76\left(cm\right)\)
1:
góc C=90-60=30 độ
Xét ΔABC vuông tại A có
sin B=AC/BC
=>3/BC=sin60
=>\(BC=\dfrac{3}{sin60}=2\sqrt{3}\left(cm\right)\)
=>\(AB=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\left(cm\right)\)
Cho tam giác ABC là tam giác đều có AB=3cm. Tính diện tích tam giác ABC
nếu gọi canh là 'a' thì diện tích của tam giác đều là:
(a2*căn 3)/4
do đó diện tích bằng (32*căn 3)/4
hãy k đúng cho mình nha
Cho tam giác ABC là tam giác đều có AB=3cm. Tính diện tích tam giác ABC
diện tích = 3x3=9(cm2)
Đáp số : 9 cm2
chúc bạn học tốt
cho tam giác ABC có 3 cạnh là A ;B :;C tỉ lệ với 3;4;5 . tính độ dài của tam giác . biết cạnh lớn nhất lớn hơn cạnh nhỏ nhất là 6cm
Gọi chiều cao ứng với cạnh đáy AB của tam giác ABC là a ( a thuộc N sao )
Có : a^2 = AB^2 - AB^2/4 = 3/4.AB^2 = 3/4.3^2 = 6,75
=> a = \(\frac{3\sqrt{3}}{2}\)(cm)
Diện tích tam giác ABC là : a . AB / 2 = \(\frac{9\sqrt{3}}{4}\) (cm2)
Tk mk nha
Cho tam giác ABC vuông tại A có AB\(=\) 3cm, BC \(=5cm.\)
Tính diện tích tam giác ABC
Áp dụng định lí Pytago có:
\(AC=\sqrt{BC^2-AB^2}=\sqrt{5^2-3^2}=4\left(cm\right)\)
\(\Rightarrow S_{ABC}=\dfrac{AB.AC}{2}=\dfrac{3.4}{2}=6\left(cm^2\right)\)
Diện tích tam giác ABC là:
( 3. 5 ): 2 = 7.5 ( cm2)
Đ/s:...
cho tam giác ABC có AB=3cm,AC=4cm. Thì chu vi tam giác ABC=?cm
chu vi tam giác ABC là
( 3 x 4 ) : 2 = 6 cm2
cho tam giác ABC có AB =3cm AC=4cm BC=5cm. Tính các góc trong tam giác ABC
Xét tam giác ABC : \(AB^2+AC^2=3^2+4^2=5^2=BC^2\)
\(\Rightarrow\Delta ABC\) vuông tại A \(\Rightarrow\widehat{A}=90^o\)
\(sinB=\dfrac{AC}{BC}=\dfrac{4}{5}\\
\Rightarrow\widehat{B}=53^o8'\)
\(sinC=\dfrac{AB}{BC}=\dfrac{3}{5}\\ \Rightarrow\widehat{C}=36^o52'\)
Theo định lí pytago ta có: \(AB^2+AC^2=BC^2=9+16=BC^2=25\)
⇒ Tam giác ABC vuông tại A ⇒ \(\widehat{A}=90^\circ\)
Theo tỉ lệ thức trong tam giác vuông:
\(sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{4}{5}=0,8\approx53^{\circ}\)
\(\widehat{C}=90^{\circ}-53^{\circ}=37^{\circ}\)
cho tam giác góc vuông ABC(A=90)có đường cao ah . biết Ab=3cm và AC=4cm.a chứng minh tam giác HBAcho tam giác góc vuông ABC(A=90)có đường cao ah . biết Ab=3cm và AC=4cm.a chứng minh tam giác HBA~ AbC, B tính độ dài BC và AH AbC, B tính độ dài BC và AH
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
AH=3*4/5=2,4cm
a. Xét ΔHBA và ΔABC có:
\(\widehat{H}=\widehat{A}\) = 900 (gt)
\(\widehat{B}\) chung
\(\Rightarrow\) ΔHBA \(\sim\) ΔABC (g.g)
b. Vì ΔABC vuông tại A
Theo đ/lí Py - ta - go ta có:
BC2 = AB2 + AC2
BC2 = 32 + 42
\(\Rightarrow\) BC2 = 25 cm
\(\Rightarrow\) BC = \(\sqrt{25}=5\) cm
Ta lại có: ΔHBA \(\sim\) ΔABC
\(\dfrac{AH}{CA}=\dfrac{BA}{BC}\)
\(\Leftrightarrow\dfrac{AH}{4}=\dfrac{3}{5}\)
\(\Rightarrow\) AH = 2,4 cm
Câu 17: Cho ABC có AB = AC và = 2 có dạng đặc biệt nào:
A. Tam giác cân B. Tam giác đều
C. Tam giác vuông D. Tam giác vuông cân
Câu 18: Cho tam giác ABC vuông tại A, AB = 3cm, AC = 4cm. Độ dài cạnh BC là:
A. 7cm B. 12,5cm C. 5cm D.
Câu 19: Tam giác ABC có AB = 12cm, AC = 13cm, BC = 5cm. Khi đó vuông tại:
A. Đỉnh A B. Đỉnh B C. Đỉnh C D. Tất cả đều sai
Câu 20: Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC. Khẳng định nào sau đây sai?
A. ABM = ACM B. ABM= AMC
C. AMB= AMC= 900 D. AM là tia phân giác CBA
Câu 21: Cho tam giác đều ABC độ dài cạnh là 6cm. Kẻ AH vuông góc với BC(H thuộc BC). Độ dài AH là:
A. cm B. 3cm C. cm D. cm
Câu 22: Cho ABC= DEF. Khi đó: .
A. BC = DF B. AC = DF
C. AB = DF D. góc A = góc E
Câu 23. Cho PQR= DEF, DF =5cm. Khi đó:
A. PQ =5cm B. QR= 5cm C. PR= 5cm D.FE= 5cm
Câu 24. Cho tam giác MNP cân tại M, . Khi đó,
A. B. C. D.
Câu 25 : Cho ABC= MNP biết thì:
A. MNP vuông tại P B. MNP vuông tại M
C. MNP vuông tại N D. ABC vuông tại A
Câu 17: Cho ABC có AB = AC và = 2 có dạng đặc biệt nào:
A. Tam giác cân B. Tam giác đều
C. Tam giác vuông D. Tam giác vuông cân
Câu 18: Cho tam giác ABC vuông tại A, AB = 3cm, AC = 4cm. Độ dài cạnh BC là:
A. 7cm B. 12,5cm C. 5cm D.
Câu 19: Tam giác ABC có AB = 12cm, AC = 13cm, BC = 5cm. Khi đó vuông tại:
A. Đỉnh A B. Đỉnh B C. Đỉnh C D. Tất cả đều sai
Câu 20: Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC. Khẳng định nào sau đây sai?
A. ABM = ACM B. ABM= AMC
C. AMB= AMC= 900 D. AM là tia phân giác CBA
Câu 22: Cho ABC= DEF. Khi đó: .
A. BC = DF B. AC = DF
C. AB = DF D. góc A = góc E
Câu 23. Cho PQR= DEF, DF =5cm. Khi đó:
A. PQ =5cm B. QR= 5cm C. PR= 5cm D.FE= 5cm
cho tam giác ABC có cạnh AB=20cm.nếu kéo dài đoạn AB thêm 1doan BE=3cm thì diện tích tam giác ABC tăng thêm 16cm2.tính diện tích tam giác ABC