Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
lê thị mỹ trang
Xem chi tiết
??????
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 3 2023 lúc 22:37

1: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

2: Xét ΔBKI vuông tại B và ΔABC vuông tại A có

góc BIK=góc ACB

=>ΔBKI đồng dạng vơi ΔABC

Linh Đan
Xem chi tiết
Minh Hồng
5 tháng 5 2022 lúc 16:56

a) Áp dụng định lý Pytago ta có: 

\(BC^2=AB^2+AC^2=8^2+6^2=100\Rightarrow BC=10\left(cm\right)\)

b) Do \(AD=AB\) nên \(CA\) là trung tuyến 

Mà \(AC\cap BK=E\) với \(BK\) là trung tuyến

\(\Rightarrow E\) là trọng tâm \(\Delta BCD\)

\(\Rightarrow CE=\dfrac{2}{3}AC=\dfrac{2}{3}.6=4\left(cm\right)\Rightarrow AE=2\left(cm\right)\)

c) Ta có \(CA\) vừa là trung tuyến vừa là đường cao \(\Delta BCD\)

\(\Rightarrow\Delta BCD\) cân tại \(C\Rightarrow CB=CD\)

XiangLin Linh
Xem chi tiết
Thanh Hoàng Thanh
5 tháng 2 2021 lúc 16:06

a) Xét tam giác AHB và tam giác AHC:

AB = AC (tam giác ABC cân tại A)

^B = ^C (tam giác ABC cân tại A)

BH = CH (do H là trung điểm của BC)

=> Tam giác AHB = Tam giác AHC (c - g - c)

b) Vì H là trung điểm của BC (gt)

=> BH = CH = \(\dfrac{1}{2}\)BC = \(\dfrac{1}{2}\)8 = 4 (cm)

Xét tam giác ABH vuông tại H (AH vuông góc BH):

Ta có:      AB2 = AH2 + BH2 (định lý Py ta go)

Thay số: 102 = AH2 + 42

<=> AH2 = 102 - 42

<=> AH2 = 84 

<=> AH = \(2\sqrt{21}\) (cm)

c) Xét tam giác ABC cân tại A:

AH là đường trung tuyến (do H là trung điểm của BC)

=> AH là đường cao (TC các đường trong tam giác cân)

Xét tam giác ADM có:

H là trung điểm của AD (HA = HD)

C là trung điểm của DM (CD = CM)

=> HC là đường trung bình của tam giác ADM (định nghĩa đường trung bình trong tam giác)

=> HC // AM (TC đường trung bình trong tam giác)

Mà HC vuông góc AD (do BC vuông góc AH)=> AM vuông góc AD (Từ vuông góc đến //)

             

Thanh Hoàng Thanh
5 tháng 2 2021 lúc 21:00

A B C E D O

Thanh Hoàng Thanh
5 tháng 2 2021 lúc 21:08

Minh Vương Nguyễn Bá
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 3 2022 lúc 20:09

a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó:ΔABD=ΔEBD

Suy ra: BA=BE

b: \(BC=\sqrt{12^2+15^2}=3\sqrt{41}\left(cm\right)\)

c: \(\widehat{ADE}=180^0-60^0=120^0\)

d: Ta có: DA=DE

mà DE<DC

nên DA<DC

Lương Thanh Thảo
Xem chi tiết
Nguyễn Xuân Trường Kiên
5 tháng 6 2017 lúc 7:44

Câu 1: Tam giác ABC vuông tại A có AM là đường trung tuyến ứng với cạnh huyền BC

 => AM=\(\frac{1}{2}\)BC mà AM=6 cm=> BC=12cm.

Tam giác ANB vuông tại A có AN2+AB2=BN2 (Theo Pytago)   mà BN=9cm (gt)

=>AN2+AB2=81        Lại có AN=\(\frac{1}{2}\)AC =>\(\frac{1}{2}\)AC2+AB2=81     (1)

Tam giác ABC vuông tại A có: AC2+AB2=BC=> BC2 - AB= AC2   (2)

Từ (1) và (2) suy ra \(\frac{1}{4}\)* (BC- AB2)+AB2=81       mà BC=12(cmt)

=> 36 - \(\frac{1}{4}\)AB2+AB2=81

=> 36+\(\frac{3}{4}\)AB2=81

=> AB2=60=>AB=\(\sqrt{60}\)

Nguyễn Thị Bích Ngọc
9 tháng 7 2019 lúc 18:35

C2

Cho hình thang cân ABCD có đáy lớn CD = 1

C4

Câu hỏi của Thiên An - Toán lớp 9 - Học toán với OnlineMath

Vũ Huyền OFFICIAL
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 4 2023 lúc 10:15

loading...  

Hà Ngọc Bách
16 tháng 3 lúc 21:48

AH cắt đường tròn tâm O tại M . Tam giác abd có dk là đường cao nên bk.ba=bd.bd mà  bk.ba = bf.bi nên bd.bd =bf.bi  

Nên bf/bd=bd/bi và góc ibd chung 

Nên tam giác bfd đồng dạng tam giác bdi

Nên góc bdi = góc bid mà bdi=ecb=bcm

mà góc bia=  góc bca 

Cộng lại được aid=dcm 

Aicm nội tiếp nên aim = dcm . Từ đó suy ra aid=aim 

Nên i,d,m thẳng hàng nên ah và id cắt nhau tại điểm thuộc đường trón tâm o

hello
Xem chi tiết

1: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

\(\widehat{ABC}\) chung

Do đó: ΔABC~ΔHBA

2: Sửa đề: \(HA\cdot HB=HC\cdot HD\)

Xét ΔHAC vuông tại H và ΔHDB vuông tại H có

\(\widehat{HAC}=\widehat{HDB}\)(hai góc so le trong, BD//AC)

Do đó: ΔHAC~ΔHDB

=>\(\dfrac{HA}{HD}=\dfrac{HC}{HB}\)

=>\(HA\cdot HB=HD\cdot HC\)

Xét ΔABC vuông tại A và ΔBDA vuông tại B có

\(\widehat{ABC}=\widehat{BDA}\left(=90^0-\widehat{HAB}\right)\)

Do đó: ΔABC~ΔBDA

=>\(\dfrac{AC}{BA}=\dfrac{AB}{BD}\)

=>\(AB^2=AC\cdot BD\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AB^2=BH\cdot BC\)

=>\(AC\cdot BD=BH\cdot BC\)

Phan Hà Nhật Linh
Xem chi tiết