Câu 4 (3,0 điểm) Cho tam giác ABC vuông tại A ( AB < AC ), đường cao AH
1) Chứng minh tam giác ABC đồng dạng với tam giác HBA.
2) Qua B kẻ đường thẳng song song với AC, cắt đường thẳng AH tại D. Chúng minh:
НАНВ - НС.HD va BC.BH - AC.BD
3) Lấy M, N lần lượt trên các đoạn thẳng BD và AC sao cho BM =BD, CN = AC.
các bạn giải hộ mik câu b thôi nhé
1: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{ABC}\) chung
Do đó: ΔABC~ΔHBA
2: Sửa đề: \(HA\cdot HB=HC\cdot HD\)
Xét ΔHAC vuông tại H và ΔHDB vuông tại H có
\(\widehat{HAC}=\widehat{HDB}\)(hai góc so le trong, BD//AC)
Do đó: ΔHAC~ΔHDB
=>\(\dfrac{HA}{HD}=\dfrac{HC}{HB}\)
=>\(HA\cdot HB=HD\cdot HC\)
Xét ΔABC vuông tại A và ΔBDA vuông tại B có
\(\widehat{ABC}=\widehat{BDA}\left(=90^0-\widehat{HAB}\right)\)
Do đó: ΔABC~ΔBDA
=>\(\dfrac{AC}{BA}=\dfrac{AB}{BD}\)
=>\(AB^2=AC\cdot BD\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AB^2=BH\cdot BC\)
=>\(AC\cdot BD=BH\cdot BC\)