Cho \(\Delta ABC\) cân tại \(A\) . Các điểm \(M;N\) lần lượt di động trên các cạnh \(AB;AC\). Sao cho \(AM=CN\). Tìm tập hợp các trung điểm \(I\in MN\)
Cho tam giác ABC cân tại A có \(\widehat {A{\rm{ }}} = 120^\circ \). Trên cạnh BC lấy hai điểm M, N sao cho MA, NA lần lượt vuông góc với AB, AC. Chứng minh rằng:
a) \(\Delta \)BAM = \(\Delta \)CAN;
b) Các tam giác ANB, AMC lần lượt cân tại N, M.
a) Xét 2 tam giác vuông BAM và CAN có:
\(\widehat{BAM} = \widehat{CAM}(=90^0)\)
AB=AC (Do tam giác ABC cân tại A)
\(\widehat B = \widehat C\) (Do tam giác ABC cân tại A)
=>\(\Delta BAM = \Delta CAN\)(g.c.g)
b) Cách 1:
Xét tam giác ABC cân tại A, có \(\widehat {A{\rm{ }}} = 120^\circ \) có:
\(\widehat B = \widehat C = \frac{{{{180}^o} - {{120}^o}}}{2} = {30^o}\).
Xét tam giác ABM vuông tại A có:
\(\widehat {B} + \widehat {BAM} + \widehat {AMB} = {180^o}\\ \Rightarrow {30^o} + {90^o} + \widehat {AMB} = {180^o}\\ \Rightarrow \widehat {AMB} = {60^o}\\ \Rightarrow \widehat {AMC} = {180^o} - \widehat {AMB} = {180^o} - {60^o} = {120^o}\)
Xét tam giác MAC có:
\(\begin{array}{l}\widehat {AMC} + \widehat {MAC} + \widehat C = {180^o}\\ \Rightarrow {120^o} + \widehat {MAC} + {30^o} = {180^o}\\ \Rightarrow \widehat {MAC} = {30^o} = \widehat C\end{array}\)
\(\Rightarrow \) Tam giác AMC cân tại M.
Vì \(\Delta BAM = \Delta CAN\)
=> BM=CN ( 2 cạnh tương ứng)
=> BM+MN=CN+NM
=> BN=CM
Xét 2 tam giác ANB và AMC có:
AB=AC (cmt)
\(AN = AM\)(do \(\Delta BAM = \Delta CAN\))
BN=MC (cmt)
=>\(\Delta ANB = \Delta AMC\)(c.c.c)
Mà tam giác AMC cân tại M.
=> Tam giác ANB cân tại N.
Cách 2:
Xét tam giác ABC cân tại A, có \(\widehat {A{\rm{ }}} = 120^\circ \) có:
\(\widehat B = \widehat C = \frac{{{{180}^o} - {{120}^o}}}{2} = {30^o}\).
Xét tam giác ABM vuông tại A có:
\(\widehat B + \widehat {BAM} + \widehat {AMB} = {180^o}\\ \Rightarrow {30^o} + {90^o} + \widehat {AMB} = {180^o}\\ \Rightarrow \widehat {AMB} = {60^o}\)
Vì \(\Delta BAM = \Delta CAN\) nên AM = AN (2 cạnh tương ứng)
=> \(\Delta AMN\) đều (Tam giác cân có 1 góc bằng 60 độ)
=> \(\widehat {NAM}=60^0\)
Ta có: \(\widehat{BAN}+\widehat{NAM}=\widehat{BAM}\)
=> \(\widehat{BAN} + 60^0=90^0\)
=> \(\widehat{BAN}=30^0\)
Xét tam giác ABN có \(\widehat{BAN}=\widehat{ABN}(=30^0\) nên \(\Delta ABN\) cân tại N.
Ta có: \(\widehat{CAM}+\widehat{NAM}=\widehat{CAN}\)
=> \(\widehat{CAM} + 60^0=90^0\)
=> \(\widehat{CAM}=30^0\)
Xét tam giác ACM có \(\widehat{CAM}=\widehat{ACM}(=30^0\) nên \(\Delta ACM\) cân tại M.
Cho tam giác ABC cân tại A.Trên cạnh AB và AC lấy lần luợt các điểm M và N sao cho BM=CN.Gọi BN cát CM tại O.Chứng minh rằng:
a)Tam giác AMN cân và MN song song BC. b)\(\Delta BMO=\Delta CNO.\)
a, ta có BN VÀ CN THEO THỨ TỰ PHÂN GIÁC CỦA GÓC B VÀ GÓC C (GT)
NEN B1=B2=1/2B VÀ C1=C2=1/2 C MÀ GÓC B = GÓC C
(2 GÓC Ở ĐÁY CỦA TAM GIÁC CÂN ABC) =>GÓC B2 =GỐC C2
XÉT TAM GIÁC ABD VÀ TAM GIÁC ACE CO
GÓC A CHUNG (GT)
GÓC B2 = GÓC C2
CANH AB=AC(GT
VẬY TAM GIÁC ABE=TAM GIÁC ACE (GCG) =>AD=AE
=> TAM GIÁC AMN CÂN TẠI A
Cho \(\Delta ABC\) cân tại A,đường cao AH.Kẻ HM vuông góc với AB tại M;HN vuông góc với AC tại N
a) CM:BH=CH
b) CM:\(\Delta AMN\) cân
c) Gọi P là giao điểm của MH với AC,Q là giao điểm của NH với AB;I là trung điểm của PQ.CM 3 điểm N;H;I thẳng hàng
giúp mình với mn ơi!!!
a) Xét ΔABH vuông tại H & ΔACH vuông tại H có:
- AB = AC (vì ΔABC cân tại A)
- AH là cạnh chung
Suy ra ΔABH = ΔACH (cạnh huyền - cạnh góc vuông)
Từ đó BH = CH (hai cạnh tương ứng)
b) Từ ΔABH = ΔACH (chứng minh trên) suy ra BM = CN (hai cạnh tương ứng)
Mà AB = AC (chứng minh trên)
Suy ra AM = AB - BM = AN = AC - CN
Trong ΔAMN có AM = AN (chứng minh trên) nên ΔAMN cân tại A
c) (Sửa đề: Chứng minh ba điểm A; H; I thẳng hàng)
cho \(\Delta ABC\) cân nội tiếp đường tròn (O;R) ,\(\widehat{A}< 90^0\) . Gọi H,I lần lượt là trung điểm của AB và AC . Nối OH,OI cắt các cung nhỏ AB,AC lần lượt tại M,N
a) c/m OA\(\perp\)MN
b) \(\Delta ABC\) phải thêm điều kiện gì để OMAN là hình thoi
cho \(\Delta ABC\) cân nội tiếp đường tròn ( O;R) , \(\widehat{A}\) < 90 độ . Gọi H ,I lần lượt là trung điểm của AB và AC . Nối OH,OI cắt các cung nhỏ AB,AC lần lượt tại M,N
a) c/m OA\(\perp\)MN
b) \(\Delta\)ABC phải thêm điều kiện gì để OMAN là hình thoi
Cho \(\Delta ABC\), M là trung điểm BC, dựng ra phía ngoài của \(\Delta ABC\)các tam giác vuông cân tại A là \(\Delta ABD,\Delta ACE\)
Chứng minh \(AM\perp DE\)
Cho\(\Delta ABC\)vuông cân tại A. Trên cạnh AB, AC lần lượt lấy các điểm M, N sao cho BM=CN gọi O là giao điểm của BN và CM. Tại A và M vẽ các đường thẳng vuông góc với BN cắt BC lần lượt tại D và E. Chứng minh rằng: D là trung điểm của CE
Cho tam giác ABC cân tại A (Hình 5). Gọi M là trung điểm cạnh BC. Nối A với M. Em hãy làm theo gợi ý sau để chứng minh \(\widehat {ABC}\)=\(\widehat {ACB}\).
Xét \(\Delta AMB\) và \(\Delta AMC\)có:
AB = ? (?)
MB = MC (?)
AM là cạnh ?
Vậy \(\Delta AMB\) =\(\Delta AMC\) (c.c.c)
Suy ra \(\widehat {ABC}\)=\(\widehat {ACB}\)
Xét \(\Delta AMB\) và \(\Delta AMC\).có:
AB = AC ( do tam giác ABC cân tại A )
MB = MC ( do M là trung điểm BC )
AM là cạnh chung
=>\(\Delta AMB\) =\(\Delta AMC\) (c.c.c)
=>\(\widehat {ABC}\)=\(\widehat {ACB}\)( 2 góc tương ứng)
cho \(\Delta ABC\) cân nội tiếp đường tròn (O;R) , \(\widehat{A}< 90^0\) . Gọi H,I lần lượt là trung điểm của AB và AC . Nối OH,OI cắt các cunh nhỏ AB,AC lần lượt tại M,N.
a) c/m \(OA\perp MN\)
b) \(\Delta ABC\) phải thêm điều kiện gì để OMAN là hình thoi
Cho \(\Delta ABC\), về phía ngoài dựng tam giác BCD vuông cân tại B và tam giác ACE vuông cân tại A. Gọi M là trung điểm DE.
CMR: \(\Delta MAB\)vuông cân