bài 1 : ab8b chia hết cho 2;3;5;9
bài 2 : abcd + abcd + ab + a=2236
bài 3:abc + ab,c + a,bc=217.56
giải chi tiết ra nha tí tui cho 3 like ok
ab8b chia hết cho 2;3;5;9
Để
ab8b chia hết cho 2 và 5 nên b = 0.
Để a080 chia hết cho 3 và 9 thì ta có :
a + 0 + 8 + 0 = chia hết cho 3 và 9 nên a = 1.
Vậy số cần tìm là 1080.
bài 1: (x+8) chia hết cho (x+7)
bài 2:(2x+14+2) chia hết cho (x+7)
bài 3:(2x+16) chia hết cho (x+7)
bài 4:(x-5+1) chia hết cho (x+7)
Bài 1:Ta có:x+8 chia hết cho x+7
=>x+7+1 chia hết cho x+7
Mà x+7 chia hết cho x+7
=>1 chia hết cho x+7
=>x+7\(\in\)Ư(1)={-1,1}
=>x\(\in\){-8,-6}
Bài 2:Ta có:2x+14+2 chia hết cho x+7
=>2(x+7)+2 chia hết cho x+7
Mà 2(x+7) chia hết cho x+7
=>2 chia hết cho x+7
=>x+7\(\in\)Ư(2)={-2,-1,1,2}
=>x\(\in\){-9,-8,-6,-5}
Bài 3: ta có:2x+16 chia hết cho x+7
=>2x+14+2 chia hết cho x+7
=>2(x+7)+2 chia hết cho x+7
Làm tương tự bài 2
Bài 4:Ta có:x-5+1 chia hết cho x+7
=>x+7-11 chia hết cho x+7
Mà x+7 chia hết cho x+7
=>11 chia hết cho x+7
=>x+7\(\in\)Ư(11)={-11,-1,1,11}
=>x\(\in\){-18,-8,-6,4}
Bài 1: Tìm số tự nhiên nhỏ nhất có 3 chữ số chia hết cho 2 nhưng ko chia hết chia hết cho 4
Bài 2: Chứng tỏ rằng tích của 2 số tự nhiên liên tiếp thì chia hết thì chia hết cho 2
Bài 3
S= 1 + 2 + 3 ..............+ 2020 có chia hết cho 5 ko? Tại Sao ?
bài 1: 998
bài 2 :98
bài 3 : có chia hết cho 5
Bài 1:Cho a1,a2,....,a2018 thuộc Z
CMR:a1+a2+...+a2018 chia hết cho 30 khi và chỉ khi a1^5 + a2^5 +...+ a2018^5 chia hết cho 30\
Bài 2: Tìm x,y thuộc N* sao cho x+y+1 chia hết cho xy
Bài 3: tìm x,y thuộc N* sao cho y+1 chia hết cho x, x+1 chia hết cho y
Bài 4:Tìm x,y thuộc N* sao cho y+2 chia hết cho x, x+2 chia hết cho y
Bài 5: Tìm x,y thuộc N* sao cho 2x+1 chia hết cho y, 2y+1 chia hết cho x
Bài 6: CMR: Với mọi n thuộc Z ta có n^5 + 5n chia hết cho 6
Bài 7:CMR: Với mọi n thuộc Z ta có n(2n+7)(7n+1) chia hết cho 6
Giúp mình nhé, cảm ơn các bạn nhiều!!!
6 \(n^5+5n=n^5-n+6n=n\left(n^4-1\right)+6n=n\left(n^2-1\right)\left(n^2+1\right)+6n\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)+6n\)
vì n,n-1 là 2 số nguyên lien tiếp \(\Rightarrow n\left(n-1\right)⋮2\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\)
n,n-1,n+1 là 3 sô nguyên liên tiếp \(\Rightarrow n\left(n-1\right)\left(n+1\right)⋮3\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮3\)
\(\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\cdot3=6\)
\(6⋮6\Rightarrow6n⋮6\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)-6n⋮6\Rightarrow n^5+5n⋮6\)(đpcm)
7 \(n\left(2n+7\right)\left(7n+1\right)=n\left(2n+7\right)\left(7n+7-6\right)=7n\left(n+1\right)\left(2n+7\right)-6n\left(2n+7\right)\)
\(=7n\left(n+1\right)\left(2n+4+3\right)-6n\left(2n+7\right)\)
\(=7n\left(n+1\right)\left(2n+4\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)
\(=14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)
n,n+1,n+2 là 3 sô nguyên liên tiếp dựa vào bài 6 \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\Rightarrow14n\left(n+1\right)\left(n+2\right)⋮6\)
\(21⋮3;n\left(n+1\right)⋮2\Rightarrow21n\left(n+1\right)⋮3\cdot2=6\)
\(6⋮6\Rightarrow6n\left(2n+7\right)⋮6\)
\(\Rightarrow14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)⋮6\)
\(\Rightarrow n\left(2n+7\right)\left(7n+1\right)⋮6\)(đpcm)
......................?
mik ko biết
mong bn thông cảm
nha ................
Bài 1 : A= 10!+ 1.3.5...9 chia het cho 5
Bài 2 : B = 10! + 1.3.5...9 + 2009 chia hết cho 2
Bài 3 : C = 17^17 + 13^13 chia hết cho 3 và chia hết cho 5
Bài 4: D = 17^17 - 13^13 chia hết cho 2 nhưng ko chia hết cho 5
Bài 1: +) 1020 + 2 chia hết cho 3,chia hết cho 9 ?
+) 1010 - 1 chia hết cho 3,chia hết cho 9 không?
Bài 1 : cho 2 số tự nhiên m,n thỏa mãn đẳng thức 24.m^4 +1 = n^2. CMR tích số (m.n) chia hết cho 5
Bài 2: Tìm n thuộc N để (n^10+1) chia hết cho 10.
Bài 3: Tìm n thuộc N để (n^2+n+1) chia hết cho n^2+1
Bài 4:Tìm n thuộc N để ( n+5)(n+6) chia hết cho 6n
Bài 5: Tìm n thuộc N để ( 3n^2+3n+7) chia hết cho 5
Bài 6: Tìm n thuộc N để (2^n-1) chia hết cho 7
Bài 7 : Tìm n thuộc N để (3^n+63) chia hết cho 72
Bài 8: Cho n thuộc N* ; (n,10)=1. CMR : (n^4-1) chia hết cho 40
Bài 9: Cho n thuộc N* . CMR : A= (2^3n+1 + 2^3n-1 +1) chia hết cho 7
Bài 10: Tìm x,y sao cho xxyy( có gạch trên đầu) là số chính phương
Bài 11: Tìm x, y sao cho xyyy( có gạch trên đầu) là số chính phương
trời ơi những câu nào tương tự thì hỏi lmj hỏi 1 câu rồi tự làm tương tự!
Bài 1 :CMR với mọi n thuộc N , thì 60n + 75 chia hết cho 15 nhưng không chia hết cho 30
Bài 2 : Cho A = 1+4+4^2+.....+4^2011
Bài 3 ; Cho ( a-b ) chia hết cho 7 , CMR ( 4a - 3b ) chia hết cho 7
Cho ( 4a + 3b ) chia hết cho 7 , CMR ab gạch đầu chia hết cho 3
bài 1 : viết các phân số có mẫu số là 12 .
1/6,12/3,3/36,10
bài 2 :
2ab0 chia hết cho 2,3,4,5.
9a01b chia hết cho 2,5 nhưng chia cho 9 dư 8.
4a78b chia hết cho 2,5 nhưng chia cho 3 dư 2.
bài 1 :
\(\dfrac{1}{6}=\dfrac{2}{12};\dfrac{12}{3}=\dfrac{48}{12};\dfrac{3}{36}=\dfrac{1}{12};10=\dfrac{120}{12}\)