Cho n là số tự nhiên . Chứng minh : ( 7n + 10 ; 5n + 7 ) = 1
chứng minh phân số \(\dfrac{7n+10}{5n+7}\) là 1 phân số tối giản với mọi số tự nhiên n
Gọi d=ƯCLN(7n+10;5n+7)
=>35n+50-35n-49 chia hếtcho d
=>1 chia hết cho d
=>d=1
=>PSTG
Chứng minh A=7n+10/5n+7 là PS tối giản với mọi n là số tự nhiên
AI NHANH MÌNH TICK
Giả sử 7n+10 và 5n+7 đều chia hết cho d
<=> 5(7n+10) và 7(5n+7) đều chia hết cho d
<=> 35n+50 và 35n+49 đều chia hết cho d
=> (35n+50) - (35n+49) chia hết cho d
35n+50-35n-49 chia hết cho d
<=> 1 chia hết cho d
=> d=1
Vậy \(\frac{7n+10}{5n+7}\)là phân số tối giản
Hướng dẫn giải:
Gọi d là ƯCLN của 5n + 7 và 7n + 10
⇒ (5n + 7)⋮ d và (7n + 10)⋮ d
⇒ [7(5n + 7) - 5(7n + 10)] = -1⋮ d
⇒ d = 1 hoặc d = -1
Vậy phân thức đã cho tối giản với ∀n ∈ N
Chứng minh:
a) ( 3 n - 1 ) 2 - 4 chia hết cho 3 với mọi số tự nhiên n;
b) 100 - ( 7 n + 3 ) 2 chia hết cho 7 với n là số tự nhiên.
a) Ta có: ( 3 n - 1 ) 2 - 4 = (3n - 1 - 2)(3n - 1 + 2) = 3(n - l)(3n + 1).
Do 3(n - 1)(3n + l) chia hết cho 3 với mọi số tự nhiên n, nên ( 3 n - 1 ) 2 - 4 chia hết cho 3 với mọi số tự nhiên n;
b) Ta có: 100 - ( 7 n + 3 ) 2 =(7 - 7n)(13 – 7n) = 7(1 - n)(13 -7n) chia hết cho 7 với n là số tự nhiên.
CHỨNG MINH rằng với mọi số tự nhiên n , các số sau là hai số tự nhiên :
a) 2n + 1 và 3n + 2
b) 7n + 10 và 5n + 7
đề 1 chứng minh rằng với mọi số tự nhiên n ,các số sau là số nguyên tố cùng nhau
a/ 7n+10 và 5n+7
b/ 2n+ và 4n+8
đề 2 chứng minh rằng có vô số tự nhiên n để n+15 và n+72 là hai số nguyên tố cùng nhau
Đề 3 số tự nhiên n có 54 ước , Chứng minh rằng tích các ước của n bằng n^27
Đề 4 tìm số tự nhiên khác 0 nhỏ hơn 60 có nhiều ước nhất
đề 1 chứng minh rằng với mọi số tự nhiên n ,các số sau là số nguyên tố cùng nhau
a/ 7n+10 và 5n+7
b/ 2n+ và 4n+8
đề 2 chứng minh rằng có vô số tự nhiên n để n+15 và n+72 là hai số nguyên tố cùng nhau
Đề 3 số tự nhiên n có 54 ước , Chứng minh rằng tích các ước của n bằng n^27
Đề 4 tìm số tự nhiên khác 0 nhỏ hơn 60 có nhiều ước nhất
a)chứng minh rằng:2 số tự nhiên liên tiếp nguyên tố cùng nhau
b)chứng minh rằng:Với mọi số tự nhiên n thì 7n+10 và 5n+7 là hai số nguyên tố cùng nhau
các bạn làm được câu nào thì làm,mình gấp lắm
Gọi ƯCLN(7n+10;5n+7)=a
Ta có : 7n+10 chia hết cho a => 5(7n+10) chia hết cho a
=> 35n+50 chia hết cho a (1)
5n+7 chia hết cho a => 7(5n+7) chia hết cho a
=> 35n + 49 chia hết cho a (2)
Từ (1) và (2) suy ra (35n+50)-(35n+49) chia hết cho a
=> 1 chia hết cho a
=> 7n+10 và 5n+7 là 2 số nguyên tố cùng nhau
tick ủng hộ nha
Chứng minh rằng với mọi số tự nhiên n các số sau là hai số nguyên tố
A) 7n+10 và 5n+7
B) n+2 và 2n +3
chứng minh rằng với mọi n là số tự nhiên thì A= n.(2n+7).(7n+7) chia hết cho 6
Do:
\(A=n\left(2n+7\right)\left(7n+7\right)=14n^3+63n^2+49n=14n\left(n+1\right)\left(n+2\right)+3.7n\left(n+1\right)\)
nên A chia hết cho 6