Phương trình tổng quát của ∆ đi qua điểm M(3;4) và có vectơ pháp tuyến n → = 1 ; − 2 là:
A.3(x + 1) + 4(y – 2) = 0
B. 3(x – 1) + 4(y + 2) = 0
C. (x – 3) – 2(y – 4) = 0
D.(x + 3) – 2(y + 4) = 0
Câu 3: Viết phương trình tổng quát của đường thẳng d đi qua hai điểm A(1;2), B(-3;0).
Câu 4: Viết phương trình tổng quát đường cao AH của tam giác ABC biết A(1;-3), B(2;0), C(3;-1).
Câu 5: Viết phương trình tổng quát của đường thẳng d đi qua hai điểm A(3;-1), B(2;3)
Câu 9: Một hộp đựng 7 chiếc bút bi đen và 8 chiếc bút bi xanh. Lấy đồng thời và ngẫu nhiên hai chiếc bút. Tính xác suất để hai chiếc bút lấy được cùng màu?
Câu 10: Xếp 5 quyển sách Toán và 5 quyển sách Văn khác nhau lên một kệ dài. Tính xác suất để 2 quyển sách cùng một môn nằm cạnh nhau.
5:
Gọi (d): y=ax+b là phương trình cần tìm
Theo đề, ta có hệ:
3a+b=-1 và 2a+b=3
=>a=-4 và b=11
=>y=-4x+11
4:
vecto BC=(1;-1)
=>AH có VTPT là (1;-1)
Phương trình AH là:
1(x-1)+(-1)(y+3)=0
=>x-1-y-3=0
=>x-y-4=0
viết phương trình tổng quát của đường thẳng d đi qua điểm M(-2;3) và có vecto chỉ phương \(\overrightarrow{u}\)=(1;-3)
Đường thẳng d có 1 vtcp là (1;-3) nên nhận (3;1) là 1 vtpt
Phương trình d:
\(3\left(x+2\right)+1\left(y-3\right)=0\Leftrightarrow3x+y+3=0\)
Phương trình tổng quát của đường thẳng ∆ đi qua điểm M(3; 4) và song song với đường thẳng 2x – y + 3 = 0 là:
A. 2x – y – 3 = 0
B. 2x – y + 5 = 0
C. 2x – y – 2 = 0
D. 2x – y=0
ĐÁP ÁN C
Do đường thẳng ∆ song song với đường thẳng 2x – y + 3= 0 nên đường thẳng ∆ có dạng:
2x - y + c= 0 ( c ≠ 3 )
Do đường thẳng ∆ đi qua M( 3; 4) nên ta có:
2. 3 - 4 + c =0 ⇔ c = − 2
Vậy phương trình của ∆ là 2x – y – 2 = 0
Phương trình tổng quát của đường thẳng Δ biết Δ đi qua điểm M(-1;2) và có hệ số góc k=3 là:
A. 3x - y - 1 = 0
B. 3x - y - 5 = 0
C. x - 3y + 5 = 0.
D. 3x - y + 5 = 0
Chọn D.
Phương trình tổng quát của đường thẳng Δ đi qua điểm M(-1;2) và có hệ số góc k = 3 là: y = 3(x + 1) + 2 ⇔ 3x - y + 5 = 0
Viết phương trình tổng quát của đường thẳng đi qua điểm M(4; 0) và điểm N(0; -1).
Đường thẳng MN nhận là 1 vtcp
⇒ MN nhận là 1 vtpt
Mà M(4; 0) thuộc đường thẳng MN
⇒ Phương trình đường thẳng MN: 1(x - 4) – 4(y - 0) = 0 hay x – 4y – 4 = 0.
Phương trình tổng quát của đường thẳng d đi qua điểm M(2;-3) và nhận vecto n → = 3 ; - 2 làm vecto pháp tuyến là?
A. 2x - 3y - 12 = 0
B. -2x + 3y - 12 = 0
C. 3x - 2y - 12 = 0
D. -3x + 2y - 12 = 0
Đáp án: C
Phương trình tổng quát của đường thẳng d đi qua M(2;-3) và nhận n → = 3 ; - 2 làm vecto pháp tuyến có dạng:
3(x - 2) - 2(y + 3) = 0 ⇔ 3x - 2y - 12 = 0
Viết phương trình tổng quát của đường thẳng đi qua hai điểm M(-2,3) và N (4,1)
\(\Delta\left\{{}\begin{matrix}quaM\left(-2;3\right)\\VTCP=\overrightarrow{u}=\overrightarrow{MN}=\left(6;-2\right)\end{matrix}\right.\)
\(\Rightarrow\overrightarrow{VTPT}=\overrightarrow{n}=\left(2;6\right)\)
\(PTTQ\) của \(\Delta:a\left(x-x_o\right)+b\left(y-y_o\right)=0\)
\(\Leftrightarrow2\left(x+2\right)+6\left(y-3\right)=0\)
\(\Leftrightarrow2x+4+6y-18=0\)
\(\Leftrightarrow2x+6y-14=0\)
Vậy PTTQ của đường thẳng \(\Delta\) là : \(2x+6y-14=0\)
Ta có:
Vecto MN = (6; -2) = (3; -1) là vec tơ chỉ phương của (MN)
⇒ Vec tơ pháp tuyến của (MN) là n = (2; 6) = (1; 3)
Phương trình tổng quát của (MN):
(MN): 1.(x + 2) + 3(y - 3) = 0
⇔ x + 7 + 3y - 9 = 0
⇔ x + 3y - 7 = 0
cho đường thẳng (d) có phương trình tổng quát : 2x-y+3=0 và đi qua M(3,1) : a) viết phương trình đường thẳng (d') đi qua M và vuông góc với (d) ; b) tìm điểm H là giao điểm của (d) và (d') ; c) tìm M' là điểm đối xứng với M qua (d) .
a: (d): 2x-y+3=0
=>y=2x+3
Vì (d') vuông góc với (d) nên 2a=-1
=>a=-1/2
Vậy: (d'): y=-1/2x+b
Thay x=3 và y=1 vào (d'), ta được:
b-3/2=1
hay b=5/2
Vậy: (d'): y=-1/2x+5/2
b: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}2x+3=-\dfrac{1}{2}x+\dfrac{5}{2}\\y=2x+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{2}x=-\dfrac{1}{2}\\y=2x+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{5}\\y=-\dfrac{2}{5}+3=\dfrac{13}{5}\end{matrix}\right.\)
cho đường thẳng (d) có phương trình tổng quát : 2x - y + 3 = 0 và đi qua M(3;1) : a) viết phương trình đường thẳng (d') đi qua M và vuông góc với (d) ; b) tìm điểm H là giao điểm của (d) và (d') ; c) tìm M' là điểm đối xứng với M qua (d) .
Đề bài đúng là Cho phương trình (d) có pt tổng quát : 2x-y+3=0 và điểm M( 3,1)
cho đường thẳng (d) có phương trình tổng quát : 2x-y+3=0 và đi qua M(3,1) : a) viết phương trình đường thẳng (d') đi qua M và vuông góc với (d) ; b) tìm điểm H là giao điểm của (d) và (d') ; c) tìm M' là điểm đối xứng với M qua (d) .