Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Chí Thành
Xem chi tiết
Anh Quynh
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 9 2021 lúc 21:54

Xét (\(\dfrac{MO}{2}\)) có 

ΔOAM nội tiếp đường tròn

OM là đường kính

Do đó: ΔOAM vuông tại A

hay MA là tiếp tuyến có A là tiếp điểm của (O) 

Xét \(\left(\dfrac{OM}{2}\right)\) có

ΔOBM nội tiếp đường tròn

OM là đường kính

Do đó: ΔOBM vuông tại B

hay MB là tiếp tuyến có B là tiếp điểm của (O)

Lê Thiên Hương
Xem chi tiết
Hà Minh Nhật
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 12 2023 lúc 22:17

a: Xét tứ giác MAOB có

\(\widehat{MAO}+\widehat{MBO}=90^0+90^0=180^0\)

=>MAOB là tứ giác nội tiếp

=>M,A,O,B cùng thuộc một đường tròn

b; Xét (O) có

MA,MB là tiếp tuyến

Do đó: MA=MB

=>M nằm trên đường trung trực của AB(1)

ta có: OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra MO là đường trung trực của AB

=>MO\(\perp\)AB

Minh Hoàng Nguyễn
Xem chi tiết
nhanphamcui
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 12 2021 lúc 22:07

a: Xét tứ giác MAOD có 

\(\widehat{MAO}+\widehat{ODM}=180^0\)

Do đó: MAOD là tứ giác nội tiếp

Hứa Thị Mai Anh
Xem chi tiết
Nguyễn Ngọc Anh Minh
1 tháng 12 2023 lúc 7:51

O A B M H C D K F I

a/

Xét tg vuông AMO và tg vuông BMO có

MA=MB (2 tiếp tuyến cùng xp từ 1 điểm ngoài hình tròn)

OA=OB=R

=> tg AMO = tg BMO (2 tg vuông có 2 cạnh góc vuông bằng nhau)

\(\Rightarrow\widehat{AMO}=\widehat{BMO}\)

Xét tg MAB có

MA=MB (cmt) => tg MAB cân tại M

\(\widehat{AMO}=\widehat{BMO}\) (cmt)

\(\Rightarrow OM\perp AB\) (trong tg cân đường phân giác của góc ở đỉnh tg cân đồng thời là đường cao)

Xét tg vuông AMO có

\(AM^2=MO.MH\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giưa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

b/

Ta có \(\widehat{ADC}=90^o\) (góc nt chắn nửa đường tròn) => tg ACD vuông tại D \(\Rightarrow AD\perp MC\)

Xét tg vuông AMC có

\(AM^2=MD.MC\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giưa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

Ta có

\(AM^2=MO.MH\) (cmt)

\(\Rightarrow MH.MO=MD.MC\)

c/ Xét tg AMK có

\(OM\perp AB\left(cmt\right)\Rightarrow OH\perp AK\)

\(AD\perp MC\left(cmt\right)\Rightarrow AD\perp MK\)

\(\Rightarrow KI\perp AB\) (trong tg 3 đường cao đồng quy)

Phần còn lại không biết điểm E là điểm nào?

 

 

Phuhihj
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 5 2023 lúc 7:19

a: ΔOAB cân tại O

mà OM là đường cao

nên OM là phân giác

Xét ΔOAM và ΔOBM có

OA=OB

góc AOM=góc BOM

OM chung

=>ΔOAM=ΔOBM

=>góc OBM=90 độ

=>MB là tiếp tuyến của (O)

b:F ở đâu vậy bạn?

Phương Uyên
Xem chi tiết