có bao nhiêu giá trị nguyên của tham số m thuộc đoạn \(\left[-2018;2018\right]\)để phương trình (m+1)sin2x-sin2x+cos2x=0 có nghiệm
Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [-2018; 2018] để hàm số y = (m – 2)x + 2m đồng biến trên R.
A. 2015
B. 2017
C. Vô số
D. 2016
Hàm số bậc nhất đồng biến suy ra a > 0 hay m > 2
m thuộc đoạn [-2018; 2018] suy ra m thuộc {3; 4; ...; 2018}
Vậy có 2016 giá trị nguyên của m cần tìm.
Chọn D.
có bao nhiêu giá trị nguyên của tham số m thuộc đoạn \(\left[-3;3\right]\)
để hàm số f(x) = (m+10x + m-2 đồng biến trên R
Lời giải:
Để hàm đồng biến trên $R$ thì:
$m+1>0$
$\Leftrightarrow m>-1$
Mà $m$ nguyên và $m\in [-3;3]$ nên $m\in\left\{0;1;2;3\right\}$
Vậy có 4 giá trị thỏa mãn.
Có tất cả bao nhiêu giá trị nguyên của tham số m để phương trình
mcos4x + 10sin2xcos2x = 15-m có đúng một nghiệm thuộc đoạn \(\left[\dfrac{-\pi}{6};\dfrac{\pi}{6}\right]\)
Cho hàm số y = m sin x + 1 cos x + 1 . Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [-5;5] để giá trị nhỏ nhất của y nhỏ hơn -1
A. 6
B. 5
C. 4
D. 3
Có bao nhiêu giá trị nguyên của tham số m trên [-2018; 2018] để hàm số y = ln ( x 2 - 2 x - m + 1 ) có tập xác định là R
A. 2019
B. 2017
C. 2018
D. 1009
Cho hàm số y = m sin x + 1 cos x + 2 . Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [-5; 5] để giá trị nhỏ nhất của y nhỏ hơn -1.
có bao nhiêu giá trị nguyên của tham số m thuộc đoạn -5,5 để pt (m\(^2\)-4)x=m(m-2) có nghiệm duy nhất
Lời giải:
Để $(m^2-4)x=m(m-2)$ có nghiệm duy nhất thì $m^2-4\neq 0$
$\Leftrightarrow (m-2)(m+2)\neq 0$
$\Leftrightarrow m\neq \pm 2$
Mà $m$ nguyên và $m\in [-5;5]$ nên $m\in\left\{-5; -4; -3; -1; 0; 1;3;4;5\right\}$
Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [-2018;2018] để hàm số y=(m-2)x+2 đồng biến trên R?
A. 2017
B. 2015
C. Vô số
D. 2016
Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [-2018;2018] để hàm số y = (m-2)x + 2 đồng biến trên ℝ ?
A. 2017
B. 2015
C. Vô số
D. 2016
Chọn D
Phương pháp:
Sử dụng: Hàm số y = ax+b đồng biến ⇔ a > 0, từ đó kết hợp điều kiện đề bài để tìm các giá trị của m.
Cách giải:
Hàm số y = (m-2)x + 2 đồng biến trên ℝ ⇔ m - 2 > 0 ⇔ m > 2
Mà => có 2016 giá trị nguyên của m thỏa mãn đề bài.
Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [−10; 10] để phương trình m x 2 - m x + 1 = 0 có nghiệm.
A. 17
B. 18
C. 20
D. 21
Nếu m = 0 thì phương trình trở thành 1 = 0 : vô nghiệm.
Khi m ≠ 0 , phương trình đã cho có nghiệm khi và chỉ khi
∆ = m 2 - 4 m ≥ 0 ⇔ m ≤ 0 m ≥ 4
Kết hợp điều kiện m ≠ 0 , ta được m < 0 m ≥ 4
Mà m ∈ Z và m ∈ [−10; 10] ⇒ m ∈ {−10; −9; −8;...; −1} ∪ {4; 5; 6;...; 10}.
Vậy có tất cả 17 giá trị nguyên m thỏa mãn bài toán.
Đáp án cần chọn là: A