Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Thị Thuỳ Dương
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 2 2022 lúc 23:26

1.

Phương trình:

\(2\left(x-3\right)+1\left(y+4\right)=0\Leftrightarrow2x+y-2=0\)

2.

Phương trình tham số: \(\left\{{}\begin{matrix}x=3-3t\\y=-4+3t\end{matrix}\right.\)

3.

\(\overrightarrow{NM}=\left(4;2\right)=2\left(2;1\right)\)

\(\Rightarrow\) Đường thẳng MN nhận (2;1) là 1 vtcp và (1;-2) là 1 vtpt

Phương trình tổng quát (chọn điểm M để viết):

\(1\left(x-3\right)-2\left(y-4\right)=0\Leftrightarrow x-2y+5=0\)

Phương trình tham số: \(\left\{{}\begin{matrix}x=3+2t\\y=4+t\end{matrix}\right.\)

dung doan
Xem chi tiết
Hà Như Thuỷ
Xem chi tiết
ánh zin
Xem chi tiết
Nguyễn Hoàng Ân
Xem chi tiết
Đặng Ngọc Đăng Thy
Xem chi tiết
vũ đăng khoa
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 4 2020 lúc 9:35

\(\overrightarrow{AB}=\left(2;3\right)\Rightarrow\) đường thẳng AB nhận \(\left(3;-2\right)\) là 1 vtpt

Phương trình AB:

\(3\left(x-2\right)-2\left(y+1\right)=0\Leftrightarrow3x-2y-8=0\)

b/ \(CH\perp AB\Rightarrow\) đường thẳng CH nhận \(\left(2;3\right)\) là 1 vtpt

Phương trình CH:

\(2\left(x+2\right)+3\left(y-2\right)=0\Leftrightarrow2x+3y-2=0\)

c/ \(\overrightarrow{BC}=\left(-6;0\right)=-6\left(1;0\right)\) ,đường thẳng d song song BC nên nhận \(\left(0;1\right)\) là 1 vtpt

Phương trình d:

\(0\left(x-2\right)+1\left(y+1\right)=0\Leftrightarrow y+1=0\)

d/ Gọi \(\overrightarrow{AC}=\left(-4;3\right)\Rightarrow\) phương trình AC có dạng:

\(3\left(x-2\right)+4\left(y+1\right)=0\Leftrightarrow3x+4y-2=0\)

Gọi \(M\left(x;y\right)\) là điểm thuộc phân giác góc A \(\Rightarrow d\left(M;AB\right)=d\left(M;AC\right)\)

\(\Leftrightarrow\frac{\left|3x-2y-8\right|}{\sqrt{3^2+2^2}}=\frac{\left|3x+4y-2\right|}{\sqrt{3^2+4^2}}\Leftrightarrow\left|15x-10y-40\right|=\left|3\sqrt{13}x+4\sqrt{13}y-2\sqrt{13}\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}15x-10y-40=3\sqrt{13}x+4\sqrt{13}y-2\sqrt{13}\\15x-10y-40=-3\sqrt{13}x-4\sqrt{13}y+2\sqrt{13}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(15-3\sqrt{13}\right)x-\left(10+4\sqrt{13}\right)y-40+2\sqrt{13}=0\\\left(15+3\sqrt{13}\right)x-\left(10-4\sqrt{13}\right)y-40-2\sqrt{13}=0\end{matrix}\right.\)

Thay tọa độ B, C vào 2 pt thì chỉ pt bên dưới cho kết quả trái dấu, vậy pt đường phân giác trong góc A là:

\(\left(15+3\sqrt{13}\right)x-\left(10-4\sqrt{13}\right)y-40-2\sqrt{13}=0\)

Đặng Ngọc Đăng Thy
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 4 2020 lúc 7:32

Ý bạn là vuông góc với đường phân giác của góc phần tư thứ hai?

Đường phân giác của góc phần tư thứ hai có hệ số góc là \(-1\Rightarrow d\) có hệ số góc là 1

Gọi pt d có dạng \(y=x+b\)

Do d qua M nên: \(3+b=-1\Rightarrow b=-4\Rightarrow y=x-4\)

Hoàng Mai Trần
Xem chi tiết
Vũ Linh Chi
16 tháng 2 2020 lúc 21:44

a,Gọi đường thẳng cần tìm là d1.

Vì d trùng với Ox nên d1 song song với Ox. Suy ra d1 có VTCP (1;0) ; VTPT(-1;0)

Ta có; PTTS \(\left\{{}\begin{matrix}x=-1+1t=-1+t\\y=2+0t=2\end{matrix}\right.\)

PTCT(không có)

PTTQ: -1(x+1)+ 0(y-2) =0

⇔ -1x-1=0 ⇔ x+1=0

Câu b tương tự :)

Khách vãng lai đã xóa
Phạm Lam Ngọc
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 4 2020 lúc 22:33

a/ Trục Ox nhận \(\left(1;0\right)\) là 1 vtcp

Gọi đường thẳng cần tìm là d', do d' vuông góc \(Ox\Rightarrow\) d' nhận \(\left(1;0\right)\) là 1 vtpt và \(\left(0;1\right)\) là 1 vtcp

Phương trình tham số: \(\left\{{}\begin{matrix}x=-1\\y=2+t\end{matrix}\right.\)

Không tồn tại ptct của d'

Pt tổng quát: \(1\left(x+1\right)+0\left(y-2\right)=0\Leftrightarrow x+1=0\)

b/ Mình viết pt một cạnh, 1 đường cao và 1 đường trung tuyến, phần còn lại tương tự bạn tự làm:

\(\overrightarrow{AB}=\left(2;-5\right)\Rightarrow\) đường thẳng AB nhận \(\left(5;2\right)\) là 1 vtpt

Phương trình AB:

\(5\left(x-1\right)+2\left(y-4\right)=0\Leftrightarrow5x+2y-13=0\)

Gọi M là trung điểm BC \(\Rightarrow M\left(\frac{9}{2};\frac{1}{2}\right)\Rightarrow\overrightarrow{AM}=\left(\frac{7}{2};-\frac{7}{2}\right)=\frac{7}{2}\left(1;-1\right)\)

\(\Rightarrow\) Đường thẳng AM nhận \(\left(1;1\right)\) là 1 vtpt

Phương trình trung tuyến AM:

\(1\left(x-1\right)+1\left(y-4\right)=0\Leftrightarrow x+y-5=0\)

Gọi CH là đường cao tương ứng với AB, do CH vuông góc AB nên đường thẳng CH nhận \(\left(2;-5\right)\) là 1 vtpt

Phương trình CH:

\(2\left(x-6\right)-5\left(y-2\right)=0\Leftrightarrow2x-5y-2=0\)