Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Đoan
Xem chi tiết
NguyenHoang Phuong Uyen
Xem chi tiết
Nguyễn Thị Thu Phương
20 tháng 4 2017 lúc 12:20

a)Ròng rọc động là hình 2

Ròng rọc cố định là hình 1

b)Dùng hệ thống ròng rọc trên để đưa 1 vật nặng có trọng lượng P=1000N lên cao thì lực kéo F phải có cường độ là : F<1000N

Chúc bn may mắn okvui

Đồng Thanh Nghị
Xem chi tiết
Đồng Thanh Nghị
26 tháng 11 2018 lúc 13:15

A B G1 G2

Minh Bui Tuan Minh
Xem chi tiết
Nguyen Van Thanh
10 tháng 11 2016 lúc 22:54

em gửi bài qua fb thầy chữa cho, tìm fb của thầy bằng sđt nhé: 0975705122

Giải và biện luận các phương trình sau 
a)    (x-ab)/(a+b) + (x-ac)/(a+c) + (x-bc)/(b+c) = a+b+c        b)    (x-a)/bc + (x-b)/ac + (x-c)/ab = 2(1/a + 1/b + 1/c)

#

Khách vãng lai đã xóa
Minh Bui Tuan Minh
Xem chi tiết

a(1/b+1/c) + b(1/c+1/a) + c(1/b+1/a) = -2, a^3 + b^3 + c^3 = 1

.CMR 1/a + 1/b + 1/c = 1

#

Khách vãng lai đã xóa
Minh Bui Tuan Minh
Xem chi tiết

a(1/b+1/c) + b(1/c+1/a) + c(1/b+1/a) = -2,

a^3 + b^3 + c^3 = 1.

CMR 1/a + 1/b + 1/c = 1

Khách vãng lai đã xóa
dsadasd
Xem chi tiết
HT2k02
1 tháng 4 2021 lúc 20:32

Với cả 3 phần thì dấu "=" xảy ra tại a=b=c=1.

a) \(\dfrac{a}{1+b^2}=\dfrac{a\left(1+b^2\right)}{1+b^2}-\dfrac{ab^2}{1+b^2}=a-\dfrac{ab^2}{1+b^2}\)

(Cosi) \(\ge a-\dfrac{ab^2}{2b}=a-\dfrac{ab}{2}\)

Tương tự : \(\dfrac{b}{1+c^2}\ge b-\dfrac{bc}{2};\dfrac{c}{1+a^2}\ge c-\dfrac{ca}{2}\)

\(\Rightarrow P\ge\left(a+b+c\right)-\dfrac{ab+bc+ca}{2}\ge\left(CS\right)\left(a+b+c\right)-\dfrac{\left(a+b+c\right)^2}{6}=3-\dfrac{3^2}{6}=\dfrac{3}{2}\)

b) \(\dfrac{1}{a^2+1}=1-\dfrac{a^2}{a^2+1}\ge\left(CS\right)1-\dfrac{a^2}{2a}=1-\dfrac{a}{2}\)

Tương tự : \(\dfrac{1}{b^2+1}\ge1-\dfrac{b}{2};\dfrac{1}{c^2+1}\ge1-\dfrac{c}{2}\)

\(\Rightarrow P\ge3-\dfrac{a+b+c}{2}=3-\dfrac{3}{2}=\dfrac{3}{2}\)

c)\(P=\dfrac{a+1}{b^2+1}+\dfrac{b+1}{c^2+1}+\dfrac{c+1}{a^2+1}=\left(\dfrac{a}{b^2+1}+\dfrac{b}{c^2+1}+\dfrac{c}{a^2+1}\right)+\left(\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}+\dfrac{1}{c^2+1}\right)\ge\dfrac{3}{2}+\dfrac{3}{2}=3\)

Phung Ngoc Tam
Xem chi tiết
Thanh Tùng DZ
21 tháng 4 2019 lúc 15:41

1. Ta có : \(\left(\frac{1}{a}-\frac{1}{b}\right)^2\ge0\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\)

Tương tự :  \(\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc}\)\(\frac{1}{a^2}+\frac{1}{c^2}\ge\frac{2}{ac}\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\). Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=9\)

\(9\le3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge3\)

Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c = 1

Thanh Tùng DZ
21 tháng 4 2019 lúc 15:43

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=7\)\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=49\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\frac{a+b+c}{abc}=49\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=49\)

Thanh Tùng DZ
21 tháng 4 2019 lúc 15:52

Xét hiệu \(A=\frac{a}{b}+\frac{b}{c}+\frac{c}{a}-\frac{b}{c}-\frac{c}{b}-\frac{a}{c}\)

\(\frac{a^2c+b^2a+c^2b-b^2c-c^2a-a^2b}{abc}\)

\(\frac{\left(c-b\right)\left(a-c\right)\left(a-b\right)}{abc}\)

Ta thấy c -b \(\ge\)0 ; a - c \(\le\)0 ; a - b \(\le\)0 nên ( c - b ) ( a - c ) ( a - b )\(\ge\)0

Mà abc > 0 nên A \(\ge\)0 => ....

OoO Kún Chảnh OoO
Xem chi tiết
Minh Ngọc Aurora
Xem chi tiết