Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 10 2019 lúc 15:47

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 8 2017 lúc 15:22

Phương pháp:

Lập BBT, xác định GTNN của hàm số trên [1;2]

Cách giải:

Bảng biến thiên:

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 12 2019 lúc 9:04

Chọn C

Xét hàm số trên đoạn

Ta có ;

Bảng biến thiên

Capture

; .

Để thì

nên .

 

Vậy tổng các phần tử của .

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
8 tháng 3 2018 lúc 15:22

Chọn C

Xét hàm số  trên đoạn [0;2]

Bảng biến thiên:

với f(0) = m - 20; f(2) = m + 6

Xét hàm số y =  1 4 x 4 - 19 2 x 2 + 30 x + m - 20  trên đoạn [0;2]

+ Trường hợp 1:  Ta có:

  suy ra không có giá trị m.

+ Trường hợp 2:  Ta có:


Vì m nguyên nên 

+ Trường hợp 3: 

Vì m nguyên nên 

Vậy  Tổng các phần tử của S bằng 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 5 2019 lúc 18:24

Đáp án B

Xét hàm số f x = 1 4 x 4 - 19 2 x 2 + 30 x + m - 20  trên [0;2] có f ' x = 0 ⇔ x = 2  

Tính f 0 = m - 20 ; f 2 = m + 6 → m a x 0 ; 2 y = m a x [ 0 ; 2 ] f x = m - 20 ; m + 6  

TH1. Với  m a x 0 ; 2 y = m - 20 ⇒ m - 20 ≥ m + 6 m - 20 ≤ 20 ⇔ m ≤ 7 - 20 ≤ m ≤ 20 ⇔ 0 ≤ m ≤ 7  

TH2. Với   m a x 0 ; 2 y = m + 6 ⇒ m - 20 ≤ m + 6 m + 6 ≤ 20 ⇔ m ≥ 7 - 20 ≤ m + 6 ≤ 20 ⇔ 7 ≤ m ≤ 14

Kết hợp với m ∈ ℤ , ta được  m = 0 ; 1 ; 2 ; . . . ; 14 → ∑ m = 105 .

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 5 2017 lúc 18:30

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 8 2018 lúc 4:29

Chọn B

Phương pháp:

Từ ycbt suy ra ta phải tìm m để hàm số có hai điểm cực trị dương hay phương trình y' = 0 có hai nghiệm dương phân biệt.

Ta sử dụng phương trình  có hai nghiệm dương phân biệt 

Cách giải:

Ta có 

 

Từ ycbt suy ra ta phải tìm m để hàm số có hai điểm cực trị dương hay phương trình y' = 0 có hai nghiệm dương phân biệt.

Khi đó 

Mà  nên có 2018 – 3 + 1 = 2016 giá trị m thỏa mãn.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
8 tháng 3 2017 lúc 14:05

Phương trình viết lại  m + 1 x = 3 m 2 - 1 x = 1 - m

Phương trình đã cho có nghiệm duy nhất khi  3 m 2 - m - 2 ≠ 0 ⇔ m ≠ 1 m ≠ − 2 3

Do m Z và m [−5; 10]  m {−5; −4; −3; −2; −1; 0; 2; 3; 4; 5; 6; 7; 8; 9; 10}.

Do đó, tổng các phần tử trong S bằng 39.

Đáp án cần chọn là: B

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 5 2017 lúc 12:36

x − m x + 1 = x − 2 x − 1 ⇔ x ≠ ± 1 m x = m + 2

Phương trình đã cho có nghiệm ⇒ m ≠ 0 x = 1 + 2 m ≠ ± 1 ⇔ m ≠ 0 m ≠ 1

Vì m Z, m [−3; 5] nên m S = {−3; −2; 1; 2; 3; 4; 5}.

Đáp án cần chọn là: D