4 giờ trước (11:29)
tìm các giá trị thực của m để y=x^3−3(m+1)x^2+3m(m+2)x−3(m+1) nghich biến trên [0;1]
tìm tất cả m để y=x^4−2m.x^2−2 đồng biến (0;+∞) trên và nghịch biến trên (−∞;0)
tìm các giá trị thực của m để y=x^3−3(m+1)x^2+3m(m+2)x−3(m+1) nghich biến trên [0;1]
tìm tất cả m để y=x^4−2m.x^2−2 đồng biến (0;+∞) trên và nghịch biến trên (−∞;0)
Tìm tất car các giá trị thực của tham số m để hs y= \(\dfrac{m}{3}.x^3-\left(m+1\right).x^2+\left(m-2\right).x-3m\) nghịch biến trên R.
\(y'=mx^2-2\left(m+1\right)x+m-2\)
- Với \(m=0\) ko thỏa mãn
- Với \(m\ne0\) bài toán thỏa mãn khi:
\(\left\{{}\begin{matrix}m< 0\\\Delta'=\left(m+1\right)^2-m\left(m-2\right)\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\4m+1\le0\end{matrix}\right.\) \(\Rightarrow m\le-\dfrac{1}{4}\)
tìm các giá trị thực của m để y=\(x^3-\left(m+1\right)x^2-\left(2m^2-3m+2\right)x+2m\left(2m-1\right)\) đồng biến trên \([2;+\infty\)
tìm các giá trị thực của m để y=\(x^3-3\left(m+1\right)x^2+3m\left(m+2\right)x\) nghich biến trên \(\left[0;1\right]\)
tìm tất cả m để y=\(x^4-2mx^2\) đồng biến \(\left(0;+\infty\right)\) trên và nghịch biến trên \(\left(-\infty;0\right)\)
1. Tìm tất cả các giá trị của tham số m để hàm số y = (m+2)/3.x^3 -(m+2)x^2 -(3m-1)x+1 đồng biến trên khoảng ( âm vô cùng ; cộng vô cùng)
Một học sinh giải bài toán “Tìm tất cả các giá trị thực của tham số m sao cho hàm số y = m x 3 + m x 2 + m − 2 x + 10 đồng biến trên i” theo các bước như sau:
Bước 1: Hàm số xác định trên i, và y ' = 3 m x 2 + 2 m x + m − 2
Bước 2: Yêu cầu bài toán tương đương với y ' > 0, ∀ x ∈ ℝ ⇔ 3 m x 2 + 2 m x + m − 2 > 0, ∀ x ∈ ℝ
Bước 3: ⇔ a = 3 m > 0 Δ ' = 6 m − 2 m 2 < 0 ⇔ m < 0 m > 3 m > 0
Bước 4: ⇔ m > 3. Vậy m>3
Hỏi học sinh này đã bắt đầu sai ở bước nào?
A. Bước 2
B. Bước 3
C. Bước 1
D. Bước 4
Đáp án B
Để ý thấy lời giải bài toán sai ở bước 3 do m có thể nhỏ hơn 0
3. Có bao nhiêu giá trị nguyên của tham số m để hàm số \(y=\dfrac{x+1}{x+3m}\) nghịch biến trên khoảng(6;+\(\infty\) )?
4. Có bao nhiêu giá trị nguyên của tham số m để hàm số \(y=\dfrac{x+2}{x+3m}\) đồng biến trên khoảng (-\(\infty\);-6)?
3.
\(y'=\dfrac{3m-1}{\left(x+3m\right)^2}\)
Hàm nghịch biến trên khoảng đã cho khi:
\(\left\{{}\begin{matrix}3m-1< 0\\-3m\le6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< \dfrac{1}{3}\\m\ge-2\end{matrix}\right.\)
\(\Rightarrow-2\le m< \dfrac{1}{3}\Rightarrow m=\left\{-2;-1;0\right\}\)
4.
\(y'=\dfrac{3m-2}{\left(x+3m\right)^2}\)
Hàm đồng biến trên khoảng đã cho khi:
\(\left\{{}\begin{matrix}3m-2>0\\-3m\ge-6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>\dfrac{2}{3}\\m\le2\end{matrix}\right.\)
\(\Rightarrow\dfrac{2}{3}< m\le2\Rightarrow m=\left\{1;2\right\}\)
Tìm tất cả các giá trị thực của tham số m để hàm số y = − x 3 + 3 x 2 + mx − 3 nghich biến trên (2;+∞).
A. m ≤ 0
B. m ≥ 1
C. m < 0
D. m > 1
Tìm các giá trị của m để hàm số y=1/3(m-1) x^3-(m-1)x^2 + x + 2 đồng biến trên R
y'=1/3*3x^2(m-1)-(m-1)2x+1
=x^2(m-1)-x(2m-2)+1
Để hàm số đồng biến trên R thì y'>0 với mọi x
=>m-1<>0 và (2m-2)^2-4(m-1)>0
=>m<>1 và 4m^2-8m+4-4m+4>0
=>4m^2-12m+8>0 và m<>1
=>m^2-3m+2>0 và m<>1
=>m>2 hoặc m<1
Với tất cả các giá trị thực nào của tham số m thì hàm số y = x 3 - 3 ( m + 1 ) x 2 + 3 m ( m + 2 ) x nghịch biến trên đoạn [0;1]?
A. - 1 ≤ m ≤ 0
B. - 1 < m < 0
C. m ≥ - 1
D. m ≤ 0