Trong hệ tọa độ Oxyz, tìm tọa độ điểm A' đối xứng với điểm \(A\left(1;-2;-5\right)\) qua đường thẳng \(\Delta\) có phương trình :
\(\left\{{}\begin{matrix}x=1+2t\\y=-1-t\\z=2t\end{matrix}\right.\)
Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; -4; - 5). Tìm tọa độ điểm A' đối xứng với A qua mặt phẳng (Oxz) là:
A. (1;- 4;5)
B. (- 1;4;5)
C. (1;4;5)
D. (1;4;- 5).
Đáp án D
Dễ thấy phương trình mặt phẳng (Oxz): y = 0 nên suy ra điểm đối xứng với A(1; -4; - 5) qua (Oxz) là điểm A'(1;4;-5).
#2H3Y1-1~Trong không gian với hệ tọa độ Oxyz, cho điểm A(-3;2;-1). Tọa độ điểm A' đối xứng với điểm A qua gốc tọa độ O là:
A. A'(3;-2;1)
B. A'(3;2;-1)
C. A'(3;-2;-1)
D. A'(3;2;1).
Đáp án A
Ta có xA' = 2xO-xA = 3; yA' = 2yO-yA = -2; zA' = 2zO-zA=1. Vậy A'(3;-2;1).
Trong không gian với hệ tọa độ Oxyz, cho điểmA(-1;2;3). Tìm tọa độ điểm B đối xứng với điểm A qua mặt phẳng (Oyz).
A. B(1;2;3)
B. B(1;2;-3)
C. B(-1;-2;-3)
D. B(1;-2;3)
Trong không gian với hệ trục tọa độ Oxyz cho 2 điểm A(2;1;1), B(-1;2;1). Tìm tọa độ của điểm A' đối xứng với A qua B
A. A'(4;3;3)
B. A'(4;-3;3)
C. A'(4;3;-3)
D. A'(-4;3;1)
Trong không gian với hệ trục tọa độ Oxyz, cho 2 điểm A(2;1;1), B(-1;2;1). Tìm tọa độ của điểm A' đối xứng với A qua B.
Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(-3;2;-1). Tọa độ điểm A' đối xứng với A qua trục Oy là
A. A'(-3;2;1)
B. A'(3;2;-1)
C. A'(3;2;1)
D. A'(3;-2;-1)
Trong không gian với hệ tọa độ Oxyz cho điểm A(1;-4;-5). Tọa độ điểm A’ đối xứng với điểm A qua mặt phẳng Oxz là
A. (1, -4,5)
B. (-1,4,5)
c
D. (1,4,-5)
Trong không gian với hệ tọa độ Oxyz, cho điểm A (1;–4;–5). Tọa độ điểm A’ đối xứng với điểm A qua mặt phẳng Oxz là
A. (1;–4;5)
B. (–1;4;5)
C. (1;4;5)
D. (1;4;–5)
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x + y + z - 3 = 0 và cho điểm A(1; 2; 3). Tìm tọa độ của điểm B đối xứng với A qua (P)
A. B(-1; 0; 1)
B. B(1; -1; 0)
C. B(-1; -1; -1)
D. B(1; -2; 1)
Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;2;2) và đường thẳng x - 6 2 = y - 1 1 = z - 5 1 . Tìm tọa độ điểm B đối xứng với A qua d.