cho tam giác ABC vuông cân tại A . M là trung điểm BC , G là trọng tâm tam giác ABM . Đ(7;-2)là điểm nằm trên MC sao cho GA=GD.viết pt AB biết A có hoành độ nhỏ hơn 4. và AG :3x-y-13=0
cho tam giác abc cân tại a, nội tiếp đường tròn k. gọi m là trung điểm ac. g,e lần lượt là trọng tâm tam giác abc và tam giác abm. tìm toạ độ các điểm abc biết e(4/3,11), g(2,23/3), k(2,53/5)
Cho tam giác ABC vuông cân tại A. M là trung điểm của BC. G là trọng tâm của tam giác ABC biết GM=1,5 cm ; AB= 5 cm
Tính AC và chu vi tam giác ABC
Bài 1 : Cho tam giác ABC cân tại A đường cao AH . Biết AB=5cm , BC=6cm
a) tính độ dài các đoạn thẳng AH , BH
b) Gọi G là trọng tâm của tam giác ABC Chứng minh rằng ba điểm A , G , H thẳng hàng
c) Chứng minh góc ABG = ACG
Bài 2 : Cho tam giác ABC cân tại A . Gọi M là trung điểm của cạnh BC
a) chứng minh tam giác ABM = ACM
b) Từ M vẽ MH vuông góc AB và MK vuông góc AC . Chứng Minh BH = CK
c) Từ B vẽ BP vuông góc với AC , BP cắt MH tại I , Chứng minh tam giác IBM cân
Bài 1:Cho góc xOy có Oz là tia phân giác,M là điểm bất kì thuộc tia Oz.Qua M kẻ đường thẳng a vuông góc với Ox tại A cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D.
a,CM tam giác AOM bằng tam giác BOM từ đó suy ra OM là đường trung trực của đoạn thẳng AB
b,Tam giác DMC là tam giác gì?Vì sao?
c,CM DM + AM < DC
Bài 2:Cho tam giác ABC có góc A=90* và đường phân giác BH(H thuộc AC).Kẻ HM vuông góc với BC(M thuộc BC).Gọi N là giao điểm của AB và MH.CM:
a, Tam giác ABGH bằng tam giác MBH.
b, BH là đường trung trực của đoạn thẳng AH
c, AM // CN
d, BH vuông góc với CN
Bài 3:Cho tam giác ABC vuông góc tại C có góc A = 60* và đường phân giác của góc BAC cắt BC tại E.Kẻ EK vuông góc với BK tại K(K thuộc AB).Kẻ BD vuông góc với AE tại D(D thuộc AE).CM:
a, Tam giác ACE bằng tam giác AKE
b, BE là đường trung trực của đoạn thẳng CK
c, KA=KB
d, EB>EC
Bài 4:Cho tam giác ABC vuông tại A có đường phân giác của góc ABC cắt AC tại E.Kẻ EH vuông góc BC tại H(H thuộc BC).CM:
a, Tam giác ABE bằng tam giác HBE
b, BE là đường trung trực của đoạn thẳng AH
c, EC > AE
Bài 5:Cho tam giác ABC vuông tại A có đường cao AH
1,Biết AH=4cm,HB=2cm,Hc=8cm:
a,Tính độ dài cạnh AB,AC
b,CM góc B > góc C
2,Giả sử khoảng cách từ điểm A đến đường thẳng chứa cạnh BC là không đổi.Tam giác ABC cần thêm điều kiện gì để khoảng cách BC là nhỏ nhất.
Bài 6:Cho tam giác ABC vuông tại A có đường cao AH.Trên cạnh BC lấy điểm D sao cho BD=BA.
a,CM góc BAD= góc BDA
b,CM góc HAD+góc BDA=góc DAC+góc DAB.Từ đó suy ra AD là tia phân giác của góc HAC
c,Vẽ DK vuông góc AC.Cm AK=AH
d,Cm AB+AC<BC+AH
Bài 7:Cho tam giac ABC vuông tại C.Trên cạnh AB lấy điểm D sao cho AD = AC.kẻ qua D đường thẳng vuông góc với AB cắt BC tại E. AE cắt CD tại I.
a,CM AE là phân giác \{CAB}
b,CM AE là trung trực của CD
c,So sánh CD và BC
d,M là trung điểm của BC,DM cắt BI tại G,CG cắt DB tại K.CM K là trung điểm của DB
Bài 8:Cho tam giác ABC có BC=2AB.Gọi M là trung điểm của BC,N là trung điểm của BM.Trên tia đối của NA lấy điểm E sao cho AN=EN.CM:
a,Tam giác NAB=Tam giác NEM
b,Tam giác MAB là tam giác cân
c,M là trọng tâm của Tam giác AEC
d,AB>\frac{2}{3}AN
Giúp mk bài này vs mọi người ơi!!!
Cho tam giác ABC cân tại A. Vẽ tia phân giác của góc BAC cắt cạnh BC tại M.
a) Chứng minh tam giác ABM= tam giác ACM và AM vuông góc tại BC
b) Vẽ trung tuyến BQ của tam giác ABC cắt AM tại G. Chứng minh: G là trọng tâm của tam giác ABC.
c) Cho AB= 15 cm, BC = 18cm. Tính độ dài đoạn thẳng AG
A) XÉT \(\Delta ABM\)VÀ\(\Delta ACM\)CÓ
\(AB=AC\left(GT\right)\)
\(\widehat{A_1}=\widehat{A_2}\left(GT\right)\)
AM LÀ CẠNH CHUNG
=>\(\Delta ABM\)=\(\Delta ACM\)( C-G-C)
TRONG TAM GIÁC CÂN TIA PHÂN GIÁC CŨNG LÀ ĐƯỜNG CAO
=> AM LÀ ĐƯỜNG CAO CỦA \(\Delta ABC\)
\(\Rightarrow AM\perp BC\)
B) TRONG TAM GIÁC CÂN TIA PHÂN GIÁC CŨNG LÀ TRUNG TUYẾN
=> AM LÀ TRUNG TUYẾN THỨ NHẤT CỦA \(\Delta ABC\)
MÀ BG LÀ ĐƯỜNG TRUNG TUYẾN THỨ HAI CỦA \(\Delta ABC\)
HAI ĐƯỜNG TRUNG TUYẾN NÀY CẮT NHAU TẠI G
\(\Rightarrow G\)LÀ TRỌNG TÂM CỦA \(\Delta ABC\)
Cho Tam giác ABC cân tại A có M, N là trung điểm của AC vad AB
a, C/m: Bn = CM và tam giác BCN = Tam giác CBM
b, Gọi G là trọng tâm của Tam giác ABC, qua C kẻ đường thẳng vuông góc với BC, cắt BM tại I . C/m : Tam giác GIC cân
c, Từ G kẻ đường song song BC cắt CI tại D , C/m: BC = 2GD
Cho tam giác ABC cân tại A biết góc A = 90 độ , AH vuông góc với BC tại trung điểm H
a) CM hai tam giác ABH=ACH
b)G là trọng tâm của tam giác ABC. Tính AG biết AB=5cm,BC=6CM
c)CM tam giác GBC là tam giác cân
nhìn vào hình vẽ nhá, tớ gửi hình trước cho cậu dễ thấy thôi:
a) xét 2 tam giác vuông: ABH VÀ ACH, CÓ:
AH LÀ CẠNH CHUNG
AB = AC (VÌ TAM GIÁC ABC CÂN TẠI A)
=> \(\Delta ABH=\Delta ACH\) (CẠNH HUYỀN - CẠNH GÓC VUÔNG)
a) Xét tam giác ABH và tam giác ACH
có AB = AC
AH cạnh chung
\(\Rightarrow\)tam giác ABH = tam giác ACH
Cho tam giác ABC vuông tại A có góc B = 60 độ. Trên tia đối AB lấy D sao cho AB=AD, lấy M thuốc BC sao cho AB=MB. I là trung điểm AC
a) chứng minh tam giác ABM đều, tam giác BID cân
b) chứng minh H là trọng tâm của tam giâc ABC
c) N là trung điểm CD, AN và DI cắt nhau tại K. Chứng minh tam giác HIK cân, tam giác CBD đều
d) Qua B kẻ a//CD, qua D kẻ b//BC. C/m : a,b,AC đồng quy
Trong mặt phẳng với hệ tọa độ Oxy , cho tam giác ABC vuông cân tại A . Gọi M là trung điểm của đoạn BC , G là trọng tâm tam giác ABM, D(7:-2) là điểm nằm trên đoạn thẳng MC sao cho GA=GD . Biết phương trình đường thẳng AG là 3x-y-13=0 .
a) Tìm tọa độ điểm A biết hoành độ của nó nhỏ hơn 4 .
b) Viết phương trình dường thằng AB .
Tam giác AMB vuông cân tại M có trọng tâm G => GB=GA (=GD) => G là tâm ngoại tiếp tam giác BAD => ^AGD = 2^ABD = 900
a) \(AG:3x-y-13=0\Leftrightarrow\hept{\begin{cases}x=t\\y=3t-13\end{cases}}\Rightarrow G\left(t_1;3t_1-13\right),A\left(t_2;3t_2-13\right)\)
\(\overrightarrow{DG}=\left(t_1-7;3t_1-11\right)\); \(\overrightarrow{DG}\)vuông góc với VTCP (1;3) của AG
\(\Rightarrow\left(t_1-7\right)+3\left(3t_1-11\right)=0\Leftrightarrow t_1=4\Rightarrow G\left(4;-1\right)\)
\(\Rightarrow\overrightarrow{GA}=\left(t_2-4;3t_2-12\right)\)
Ta có; \(\left(t_2-4\right)^2+\left(3t_2-12\right)^2=GA^2=d^2\left(D,AG\right)=10\)
\(\Leftrightarrow\orbr{\begin{cases}t_2=5\\t_2=3\end{cases}}\Rightarrow\orbr{\begin{cases}A\left(5;2\right)\\A\left(3;-4\right)\end{cases}}\). Mà hoành độ của A nhỏ hơn A nên \(A\left(3;-4\right)\).
b) E là trung điểm BM, có \(\overrightarrow{AG}=\left(1;3\right)\Rightarrow\overrightarrow{AE}=\left(\frac{3}{2};\frac{9}{2}\right)\Rightarrow E\left(\frac{9}{2};\frac{1}{2}\right)\Rightarrow\overrightarrow{ED}=\left(\frac{5}{2};-\frac{5}{2}\right)\)
\(\Rightarrow ED:\hept{\begin{cases}x=7+m\\y=-2-m\end{cases}}\Rightarrow B\left(7+m;-2-m\right)\)
\(\Rightarrow\overrightarrow{GB}=\left(3+m;-1-m\right)\)
Lại có: \(\left(3+m\right)^2+\left(1+m\right)^2=GB^2=GA^2=10\Leftrightarrow\orbr{\begin{cases}m=0\\m=-4\end{cases}}\Rightarrow\orbr{\begin{cases}B\left(7;-2\right)\left(l\right)\\B\left(3;2\right)\end{cases}}\)
Đường thẳng AB: đi qua \(B\left(3;2\right)\),VTCP \(\overrightarrow{AB}\left(0;6\right)\)\(\Rightarrow AB:\hept{\begin{cases}x=3\\y=2+t\end{cases}}\Leftrightarrow x-3=0.\)
(3,0 điểm) Cho tam giác ABC cân tại A, trung tuyến AM.
a) Chứng minh rằng tam giac ABM=t am giac ACM.
b) Chứng minh rằng AM là tia phân giác của góc BAC.
c) Gọi G là trọng tâm tam giac ABC. Nếu AB = 20cm, BC = 32cm, tính độ dài đoạn AG.
a: Xét ΔABM và ΔAMC có
AM chung
AB=AC
BM=CM
=>ΔABM=ΔACM
b: ΔABM=ΔACM
=>góc BAM=góc CAM
=>AM là phân giác của góc BAC
c: ΔABC cân tại A
mà AM là trung tuyến
nên AM vuông góc BC
MB=MC=BC/2=16cm
AM=căn 20^2-16^2=12cm
AG=2/3*AM=8cm