Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) đi qua điểm M(2;5;-2) và tiếp xúc với mặt phẳng α : x = 1 , β : y = 1 , γ : z = - 1 . Bán kính của mặt cầu (S) bằng:
A. 4
B. 1
C. 3 2
D. 3
cho mình hỏi vs
câu 1 trong không gian hệ trục tọa độ Oxyz cho mặt phẳng (A) đi qua hai điểm A( 2;-1;0) và có vecto pháp tuyến n (3:5:4)viết phương trình mặt cầu
câu 2 trong không gian với hệ trục tọa độ Oxyz cho mặt cầu (S) có tâm I(2;-3:7) và đi qua điểm M(-4:0;1) viết phương trình mặt cầu
Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu (S) đi qua điểm A(2;-2;5) và tiếp xúc với các mặt phẳng α : x = 1 , β : y = - 1 , γ : z = 1 . Bán kính mặt cầu (S) bằng:
A. 3
B. 1
C. 3 2
D. 33
Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu (S) đi qua điểm A(2;-2;5) và tiếp xúc với các mặt phẳng α : x = 1 , β : y = - 1 , γ : z = 1 . Bán kính mặt cầu (S) bằng:
A. 3
B. 1
C. 3 2
D. 33
Trong không gian với hệ tọa độ Oxyz, cho hai điểm M 2 ; 1 ; 0 , N - 2 ; 3 ; 2 và cho đường thẳng ∆ : x - 1 2 = y 1 = z - 2 . Mặt cầu (S) có tâm thuộc ∆ và đi qua điểm M, N có phương trình là
A. S : x - 1 2 + y - 1 2 + z - 2 2 = 17
B. S : x + 1 2 + y + 1 2 + z - 2 2 = 17
C. S : x + 1 2 + y + 1 2 + z + 2 2 = 17
D. S : x + 1 2 + y - 1 2 + z - 2 2 = 17
Chọn B.
Phương pháp: Gọi I là tâm mặt cầu thì IM=IN nên I nằm trên mặt phẳng trung trực của MN.
Cách giải: Phương trình mặt phẳng trung trực của MN là
Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt cầu (S) có tâm I 1 ; 0 ; − 3 và đi qua điểm M 2 ; 2 ; − 1
A. S : x − 1 2 + y 2 + z + 3 2 = 9.
B. S : x − 1 2 + y 2 + z + 3 2 = 3
C. S : x + 1 2 + y 2 + z − 3 2 = 9
D. S : x + 1 2 + y 2 + z − 3 2 = 3
Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt cầu (S) có tâm I 1 ; 0 ; − 3 và đi qua điểm M 2 ; 2 ; − 1
A. S : x − 1 2 + y 2 + z + 3 2 = 9.
B. S : x − 1 2 + y 2 + z + 3 2 = 3
C. S : x + 1 2 + y 2 + z − 3 2 = 9
D. S : x + 1 2 + y 2 + z − 3 2 = 3
Đáp án A
Ta có I M = 2 − 1 2 + 2 − 0 2 + − 1 + 3 2 = 3 . Mặt cầu (S) có tâm I 1 ; 0 ; − 3 và bán kính R = I M = 3 nên có phương trình là x − 1 2 + y 2 + z + 3 2 = 9 .
Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;0;-1) và mặt phẳng (P): x+ y -z -3 =0. Mặt cầu (S) có tâm I nằm trên mặt phẳng (P), đi qua điểm A và gốc tọa độ O sao cho chu vi tam giác OIA bằng 6 + 2 . Phương trình mặt cầu (S) là
A. x + 2 2 + y - 2 2 + z + 1 2 = 9 và x + 1 2 + y - 2 2 + z + 2 2 = 9
B. x - 3 2 + y - 3 2 + z - 3 2 = 9 và x - 1 2 + y - 1 2 + z + 1 2 = 9
C. x + 2 2 + y - 2 2 + z - 1 2 = 9 và x 2 + y 2 + z + 3 2 = 9
D. x + 1 2 + y - 2 2 + z + 2 2 = 9 và x - 2 2 + y - 2 2 + z - 1 2 = 9
Đáp án D.
Vậy phương trình mặt cầu cần tìm là
Trong không gian với hệ tọa độ Oxyz, cho các điểm A (0;0;-2), B(4;0;0). Mặt cầu (S) có bán kính nhỏ nhất, đi qua O, A, B có tâm là:
A. I (0;0;-1)
B. I (2;0;0)
C. I (2;0;-1)
D. I (4/3;0;-2/3)
Chọn C
Gọi J là trung điểm AB = > J = (2;0;-1)
Tam giác ABO vuông tại O nên J là tâm đường tròn ngoại tiếp tam giác OAB. Gọi I là tâm mặt cầu (S), (S) qua các điểm A, B, O. Ta có đường thẳng IJ qua J và có một VTCP là
nên có PTTS:
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): (x-1)²+ (y-2)²+ (z-3)²=9 và đường thẳng ∆ : x - 6 - 3 = y - 2 2 = z - 2 2 . Phương trình mặt phẳng (P) đi qua điểm M (4;3;4) song song với đường thẳng ∆ và tiếp xúc với mặt cầu (S) là:
A.x-2y+2z-1=0.
B.2x+2y+z-18=0.
C.2x-y-2z-10=0.
D.2x+y+2z-19=0.
Chọn D
Gọi vectơ pháp tuyến của mặt phẳng (P) là , a²+b²+c²>0.
Phương trình mặt phẳng (P): a(x-4)+b (y-3)+c (z-4)=0.
Do (P) // Δ nên -3a+2b+2c=0 => 3a = 2 (b + c)
Mặt phẳng (P) tiếp xúc với (S) nên
Thay 3a=2 (c+b ) vào (*) ta được:
TH1: 2b-c=0, chọn b=1; c=2 => a = 2 => (P): 2x+y+2z-19=0 (thỏa).
TH2: b-2c=0, chọn c=1; b=2 => a = 2 => (P): 2x+2y+z-18=0 (loại do Δ ⊂ (P))