Trong mặt phẳng tọa độ Oxy cho đường tròn (C) có tâm I(1;-1) và bán kính R=5. Biết rằng đường thẳng ( d ) : 3 x - 4 y + 8 = 0 cắt đường tròn (C) tại hai điểm phân biệt A, B. Tính độ dài đoạn thẳng AB
A. 8
B. 4
C. 3
D. 6
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A − 4 ; 1 , B 2 ; 4 , C(2; -2). Tìm tọa độ tâm I của đường tròn ngoại tiếp tam giác đã cho.
A. I 1 4 ; 1 .
B. I - 1 4 ; 1 .
C. I 1 ; 1 4 .
D. I 1 ; - 1 4 .
Gọi I( x; y). Ta có A I → = x + 4 ; y − 1 B I → = x − 2 ; y − 4 C I → = x − 2 ; y + 2 .
Do I là tâm đường tròn ngoại tiếp tam giác ABC nên I A = I B = I C ⇔ I A 2 = I B 2 I B 2 = I C 2
⇔ x + 4 2 + y − 1 2 = x − 2 2 + y − 4 2 x − 2 2 + y − 4 2 = x − 2 2 + y + 2 2 ⇔ x + 4 2 + y − 1 2 = x − 2 2 + y − 4 2 y − 4 2 = y + 2 2 ⇔ x + 4 2 = x − 2 2 + ( 1 − 4 ) 2 y = 1 ⇔ x 2 + 8 x + 16 = x 2 − 4 x + 4 + 9 y = 1 ⇔ x = − 1 4 y = 1 .
Chọn B.
Trong mặt phẳng tọa độ Oxy, đường tròn (C) có tâm I(-4;3), tiếp xúc trục Oy có phương trình là:
Trong mặt phẳng tọa độ Oxy, đường tròn (C) có tâm I(-4;3), tiếp xúc trục Oy có phương trình là
A. x 2 + y 2 - 4 x + 3 y + 9 = 0
B. x + 4 2 + y - 3 2 = 16
C. x - 4 2 + y + 3 2 = 16
D. x 2 + y 2 + 8 x - 6 y - 12 = 0
Trong mặt phẳng tọa độ Oxy, đường tròn (C) tâm I(-3;4), bán kính R = 6 có phương trình là:
A. (x + 3 ) 2 + (y - 4 ) 2 = 36
B. (x - 3 ) 2 + (y + 4 ) 2 = 6
C. (x + 3 ) 2 + (y - 4 ) 2 = 6
D. (x - 3 ) 2 + (y + 4 ) 2 = 36
Chọn A.
Phương trình đường tròn (C) tâm I(-3;4), bán kính R = 6 là:
[x - (-3) ] 2 + (y - 4 ) 2 = 6 2 ⇒ (x + 3 ) 2 + (y - 4 ) 2 = 36
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(- 4;1); B(2; 4); C(2; -2). Tìm tọa độ tâm I của đường tròn ngoại tiếp tam giác đã cho.
A. I 1 4 ; 1 .
B. I − 1 4 ; 1 .
C. I 1 ; 1 4 .
D. I 1 ; − 1 4 .
Gọi I(x, y). Ta có A I → = x + 4 ; y − 1 B I → = x − 2 ; y − 4 C I → = x − 2 ; y + 2 .
Do I là tâm đường tròn ngoại tiếp tam giác ABC nên:
I A = I B = I C ⇔ I A 2 = I B 2 I B 2 = I C 2
⇔ x + 4 2 + y − 1 2 = x − 2 2 + y − 4 2 x − 2 2 + y − 4 2 = x − 2 2 + y + 2 2 ⇔ x + 4 2 = x − 2 2 + 9 y = 1 ⇔ x = − 1 4 y = 1 .
Chọn B.
1, Trong mặt phẳng Oxy cho tam giác ABC có A(1;6) trực tâm H(1;2) tâm đường tròn ngoại tiếp tam giác là I(2;3) .Tìm tọa độ B,C biết B có hoành độ dương
Lời giải:
Gọi \(B(a,b)\) và \(C(c,d)\)
Ta có \(\overrightarrow {HA}=(0,4)\perp \overrightarrow{BC}=(c-a,d-b)\Rightarrow 4(d-b)=0\rightarrow b=d\)
Thay \(d=b\):
\(\overrightarrow{HB}=(a-1,b-2)\perp \overrightarrow{AC}=(c-1,b-6)\)
\(\Rightarrow (a-1)(c-1)+(b-2)(b-6)=0\)
Lại có \(IA^2=IB^2=IC^2\leftrightarrow\left\{{}\begin{matrix}\left(a-2\right)^2+\left(b-3\right)^2=10\\\left(c-2\right)^2+\left(b-3\right)^2=10\end{matrix}\right.\)
\(\Rightarrow (a-2)^2=(c-2)^2\rightarrow a+c=4\) ( \(a\neq c\) )
Ta thu được
\(\left\{{}\begin{matrix}\left(a-2\right)^2+\left(b-3\right)^2=10\\\left(3-a\right)\left(a-1\right)+\left(b-2\right)\left(b-6\right)=0\end{matrix}\right.\)
\(\left\{\begin{matrix} a^2+b^2-4a-6b+3=0\\ -a^2+4a+b^2-8b+9=0\end{matrix}\right.\Rightarrow 2b^2-14b+12=0\rightarrow b=1\)
hoặc \(b=6\)
Thay vào PT suy ra \(\left[{}\begin{matrix}-a^2+4a+2=0\\-a^2+4a-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}a=2+\sqrt{6}\\a=1;a=3\end{matrix}\right.\)
Vậy.....
Trong mặt phẳng tọa độ Oxy, đường tròn tâm I(3;-1) và bán kính R=2 có phương trình là:
A. ( x + 3 ) 2 + ( y - 1 ) 2 = 4
B. ( x - 3 ) 2 + ( y - 1 ) 2 = 4
C. ( x - 3 ) 2 + ( y + 1 ) 2 = 4
D. ( x + 3 ) 2 + ( y + 1 ) 2 = 4
Trong mặt phẳng tọa độ Oxy, đường tròn tâm I(3;-1) và bán kính R=2 có phương trình là:
Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có trực tâm H(-1;3), tâm đường tròn ngoại tiếp I(-3;3), chân đường cao kẻ từ đỉnh A là điểm K(-1;1). Tìm tọa độ các đỉnh A, B, C
Ta có \(HK\perp BC,K\in BC;\overrightarrow{HK}=\left(0;-2\right)\Rightarrow y-1=0\)
Gọi M là trung điểm của BC ta có phương trình \(x+3=0;M=IM\cap BC\Rightarrow M\left(-3;1\right)\)
Gọi D là điểm đối xứng của A qua I chỉ ra BHCD là hình bình hành. Khi đó M là trung điểm của HD, suy ra D(-5;-1).
I là trung điểm của AD, suy ra A(-1;7)
\(AI=\sqrt{20}\), phương trình đường tròn ngoại tiếp tam giác ABC là : \(\left(x+3\right)^2+\left(y-3\right)^2=20\)
Tọa độ điểm B, C là nghiệm của hệ phương trình :
\(\begin{cases}y-1=0\\\left(x+3\right)^2+\left(y-3\right)^2=20\end{cases}\)\(\Leftrightarrow\begin{cases}x=1\\y=1\end{cases}\) hoặc \(\begin{cases}x=-7\\y=1\end{cases}\)
Vậy ta có \(B\left(1;1\right),C\left(-7;1\right)\) hoặc \(B\left(-7;1\right),C\left(1;1\right)\)
Suy ra \(A\left(-1;7\right);B\left(1;1\right),C\left(-7;1\right)\)
hoặc\(A\left(-1;7\right);B\left(-7;1\right),C\left(1;1\right)\)