Tìm giá trị lớn nhất và nhỏ nhất của biểu thức B = x + y + z ; biết rằng x ; y ; z là các số thức thỏa mãn điều kiện y2 + yz + z2 = 1- \(\dfrac{3x^2}{2}\)
cho x,y thuộc Z :
a) với giá trị nào của x thì biểu thức :
A = 1000 - | x - 5 | có giá trị lớn nhất . tìm giá trị lớn nhất đó
b) với giá trị nào của y thì biểu thức :
B = | y - 3 | + 50 có giá trị nhỏ nhất.tìm giá trị nhỏ nhất
c) với giá trị nào của x,y thì biểu thức
C = | x - 100 | + | y + 200 | - 1 có giá trị nhỏ nhất . tìm giá trị nhỏ nhất đó
bài này ko hay cho lắm, cách làm cụ thể nhất trong cái nhất r` đấy
a)Ta thấy: \(\left|x-5\right|\ge0\)
\(\Rightarrow-\left|x-5\right|\le0\)
\(\Rightarrow1000-\left|x-5\right|\le1000\)
\(\Rightarrow A\le1000\)
Dấu "=" xảy ra khi \(\left|x-5\right|=0\Leftrightarrow x=5\)
Vậy \(Max_A=1000\) khi \(x=5\)
b)Ta thấy: \(\left|y-3\right|\ge0\)
\(\Rightarrow\left|y-3\right|+50\ge50\)
\(\Rightarrow B\ge50\)
Dấu "="xảy ra khi \(\left|y-3\right|=0\Leftrightarrow y=3\)
Vậy \(Min_B=50\) khi \(y=3\)
c)Ta thấy: \(\hept{\begin{cases}\left|x-100\right|\ge0\\\left|y+200\right|\ge0\end{cases}}\)
\(\Rightarrow\left|x-100\right|+\left|y+200\right|\ge0\)
\(\Rightarrow\left|x-100\right|+\left|y+200\right|-1\ge-1\)
\(\Rightarrow C\ge-1\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left|x-100\right|=0\\\left|y+200\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=100\\y=-200\end{cases}}\)
Vậy \(Min_C=-1\) khi \(\hept{\begin{cases}x=100\\y=-200\end{cases}}\)
Khó vậy bạn
Mình mới lớp 7
Ai cho mình xin k nhé
Thanks
Thắng Nguyễn làm đúng rồi đấy các bn, tham khảo nha
tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức B=x+y+z. Biết rằng x,y,z là các số thực thỏa mãn điều kiện y^2+yz+z^2=1007-(3x^2)/2
a) Tìm giá trị nhỏ nhất của biểu thức:
A=|x+10|+|y-10|+2012 (x,y thuộc Z)
b)Tìm giá trị lớn nhất của biểu thức:
B=-|x-90|-|y-4|+2012 (x,y thuộc Z)
a)tìm giá trị nhỏ nhất của biểu thức E = |x-30|+|y-4|+(z-2018)^2
b)tìm giá trị lớn nhất của biểu thức F = 19-|x-5|-(y-2018)^2
tìm giá trị lớn nhất và nhỏ nhất của biểu thức B=x+y+z biết rằng x,y,z là các số thỏa mãn điều kiện y^2+yz+z^2= 2- 3x^2/2
Từ đk trên ta có: \(2y^2+2zy+2z^2=2-3x^2\)
<=> \(3x^2+2y^2+2zy+2z^2=2\left(1\right)\)
<=>\(\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2=2\)
Do (x-y)2≥0; (x-z)2≥0 nên từ(*) suy ra (x+y+z)2≤2
Hay \(-\sqrt{2}\le x+y+z\le\sqrt{2}\)
Dấu "=" xảy ra khi x-y =0 và x-z=0 hay x=y=z
Thay vào (1) ta được 9x2=2 ; x=\(\dfrac{\sqrt{2}}{3};\dfrac{-\sqrt{2}}{3}\)
Với x=y=z =x=\(\dfrac{\sqrt{2}}{3};\dfrac{-\sqrt{2}}{3}\)thì max=\(\sqrt{2}\), min =\(-\sqrt{2}\)
a,Với giá trị nào của x thì biểu thức A = 20 - | x+5 | ,có giá trị lớn nhất, tìm giá trị lớn nhất đó.
b,Với giá trị nào của x thì biểu thức B = | y-3 | + 50 ,có giá trị nhỏ nhất, tìm giá trị của nó.
c,Với giá trị nào của x và y thì biểu thức C = | x-100 | + | y+200 | -1 có giá nhỏ nhất. Tìm giá trị của nó.
các bạn trả lời nhanh giúp mình nhé, ngày mai cô kiểm tra rồi
a,Vì \(|x+5|\ge0\) với \(\forall x\)
=>\(A\le20\)
Dấu bằng xảy ra \(\Leftrightarrow x+5=0\)
x=-5
Vậy Max A=20 khi x=-5
a, Vì /x+5/ >= 0 nên để A lớn nhất thì /x+5/ phải nhỏ nhất nên /x+5/ = 0 nên x=-5
Vậy A=20-/-5+5/=20-0=20
b,c Tương tự câu a
\(\text{Các số thực không âm x,y,z thay đổi thỏa mãn điều kiện: x^2+ y^2+x^2+x^2y^2+y^2z^2+z^2x^2=6. \text{Tìm giá trị lớn nhất và nhỏ nhất của biểu thức Q=x+y+z}}\)\(\text{Các số thực không âm x,y,z thay đổi thỏa mãn điều kiện x^2+y^2+z^2+x^2y^2+y^2z^2+z^2x^2=6. Tìm giá trị lớn nhất và nhỏ nhất của biểu thức Q=x+y+z}\)
https://diendantoanhoc.net/topic/182493-%C4%91%E1%BB%81-thi-tuy%E1%BB%83n-sinh-v%C3%A0o-l%E1%BB%9Bp-10-%C4%91hsp-h%C3%A0-n%E1%BB%99i-n%C4%83m-2018-v%C3%B2ng-2/
bài này năm trrong đề thi tuyển sinh vào lớp 10 ĐHSP Hà Nội Năm 2018 (vòng 2) bn có thể tìm đáp án trên mạng để tham khảo
Sử dụng bất đẳng thức AM-GN, ta có:
\(x^2y^2+1\ge2xy,\) \(y^2z^2+1\ge2yz,\) \(z^2x^2+1\ge2zx\)
Cộng các bất đẳng thức trên lại theo vế, sau đó cộng hai vế của bất đẳng thức thu được với \(x^2+y^2+z^2\), ta được:
\(\left(x+y+z\right)^2\le x^2+y^2+z^2+x^2y^2+y^2z^2+z^2x^2+3=9\)
Từ đó suy ra: \(Q\le3\)
Mặt khác, dễ thấy dấu bất đẳng thức xảy ra khi \(x=y=z=1\) nên ta có kết luận \(Max_Q=3\)
Ta sẽ chứng minh \(Q\ge\sqrt{6}\) với dấu đẳng thức xảy ra, chẳng hạn \(x=\sqrt{6},\) \(y=z=0.\) Sử dụng bất đẳng thức AM-GN, ta có:
\(2xy+x^2y^2\le x^2+y^2+x^2y^2\le x^2+y^2+z^2+x^2y^2+y^2z^2+z^2x^2=6\)
Từ đó suy ra: \(xy\le\sqrt{7}-1< 2\)
Chứng minh tương tự, ta cũng có:
\(yz< 2,\) \(zx< 2.\)
Do đó, ta có:
\(Q^2=x^2+y^2+z^2+2xy+2yz+2zx\ge x^2+y^2+z^2+x^2y^2+y^2z^2+z^2x^2=6\)
Hay: \(Q\ge\sqrt{6}\)
\(\Rightarrow Min_Q=\sqrt{6}\)
cho xy thuộc z
A, với giá trị nào x thì biểu thức A=2018-(x-7) đạt giá trị lớn nhất. Tìm giá trị lớn nhất
B, với giá trị nào y thì biểu thức B=| y+ 5 |+27đạt giá trị nhỏ nhất . Tìm giá trị nhỏ nhất
Cho x, y, z là các số thực không âm thỏa mãn \(x^2+y^2+z^2=4\). Tìm giá trị nhỏ nhất và giá trị lớn nhất của biểu thức P=x+y+z
Ta có :
\(\left(1^2+1^2+1^2\right)\left(x^2+y^2+z^2\right)\ge\left(1.x+1.y+1.z\right)^2\) (Bunhia)
\(\Leftrightarrow3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)
\(\Leftrightarrow\left(x+y+z\right)^2\le3.4=12\)
\(\Rightarrow-2\sqrt{3}\le x+y+z\le2\sqrt{3}\)
Bạn trên làm sai r. X+y+z ko âm cơ mà sao lại có gtnn là -2√3??