Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Hải An

Tìm giá trị lớn nhất và nhỏ nhất của biểu thức B = x + y + z ; biết rằng x ; y ; z là các số thức thỏa mãn điều kiện y2 + yz + z2 = 1- \(\dfrac{3x^2}{2}\)

tran nguyen bao quan
4 tháng 5 2019 lúc 20:05

Ta có \(y^2+yz+z^2=1-\frac{3x^2}{2}\Leftrightarrow2y^2+2yz+2z^2=2-3x^2\Leftrightarrow\left(x^2+y^2+z^2+2xy+2xz+2yz\right)+\left(x^2-2xy+y^2\right)+\left(x^2-2xz+z^2\right)=2\Leftrightarrow\left(x+y+z\right)^2=2-\left(x-y\right)^2+\left(x-z\right)^2\le2\Leftrightarrow-\sqrt{2}\le x+y+z\le\sqrt{2}\)

\(\Leftrightarrow-\sqrt{2}\le B\le\sqrt{2}\)

Vậy để B đạt giá trị lớn nhất thì \(\left\{{}\begin{matrix}x=y=z\\x+y+z=\sqrt{2}\end{matrix}\right.\)\(\Leftrightarrow x=y=z=\frac{\sqrt{2}}{3}\)

Để B đạt giá trị nhỏ nhất thì

\(\left\{{}\begin{matrix}x=y=z\\x+y+z=-\sqrt{2}\end{matrix}\right.\)\(\Leftrightarrow x=y=z=\frac{-\sqrt{2}}{3}\)

Vậy GTLN của B là \(\sqrt{2}\) và GTNN của B là \(-\sqrt{2}\)


Các câu hỏi tương tự
Rosie
Xem chi tiết
Nguyễn Nhật Tiên Tiên
Xem chi tiết
Mai Tiến Đỗ
Xem chi tiết
Big City Boy
Xem chi tiết
Nguyễn Thế Hiếu
Xem chi tiết
Khôi Trần
Xem chi tiết
Lê Bảo Nghiêm
Xem chi tiết
Xem chi tiết
Big City Boy
Xem chi tiết