Cho hàm số y =f(x) =ax. Chứng minh rằng:
a)Với các số x1; x2là hai giá trị của x ta có y1; y2là hai giá trị tương ứng của y thì f(x1+ x2) = f(x1) + f(2)
b) Với k ∈Q thì f(kx) = k.f(x) với mọi x ∈Q
giúp mình vơi mai nộp rùi
cho hàm số y=ax chứng minh rằng
A) với các số x1, x2 thì hai giá trị x ta có y1, y2 là 2 giá trị tương ứng của y thì f(x1+x2)=f(x1)+f(x2)
B)với k thuộc Q thì f(kx)=k.f(x) với mọi x thuộc Q
a) Ta có : \(f\left(x_1+x_2\right)=a\left(x_1+x_2\right)=ax_1+ax_2=f\left(x_1\right)+f\left(x_2\right)\)
b) Ta có : \(f\left(kx\right)=a\cdot k\cdot x=k\cdot ax=k\cdot f\left(x\right)\)
cho hàm số y=f(x)=2018 m.x chứng minh x thuộc r thì f(x1)-f(x2)=f(x1-x2) và f(kx) = kf (x) với k khác 0
giúp mình với
Lời giải:
$f(x_1)-f(x_2)=2018mx_1-2018mx_2=2018m(x_1-x_2)$
$=f(x_1-x_2)$ (đpcm)
$f(kx)=2018m(kx)=k.2018mx=kf(x)$ (đpcm)
Vẽ đồ thị hàm số
a) \(y=\frac{1}{2}\left(x-\left|x\right|\right)\)
b) Chứng minh rằng hàm số y=f(x)=ax có tính chất :f(x1+x2)=f(x1)+f(x2)
Cho hàm số y=f(x)=-5x
Chứng minh:
a) Hàm số là hàm số nghịch biến
b) f(x1+4x2)=f(x1)+4f(x2)
c) -f(x)=f(-x)
Cái này nhớ không nhầm là toán 7 :>
a) Gọi x1 và x2 là hai gtrị tương ứng của x
Giả sử x1<x2
Vì y=f(x) =-5x
\(\Rightarrow\)f(x1)=-5x1
\(\Rightarrow\)f(x2)=-5x2
mà x1<x2 \(\Rightarrow\)f(x1)>f(x2)
\(\Rightarrow\)Hs là hs nghịch biến
b) Vì y=f(x)=-5x
\(\Rightarrow\)f(x1)+4f(x2)
=-5x1+4(-5)x2
=-5(x1+4x2) (*)
\(\Rightarrow\)f(x1+4x2)=-5(x1+4x2) (**)
Từ (*), (**) \(\Rightarrow\)f(x1+4x2)=f(x1)+4f(x2)
c) Vì y=f(x)=-5x
\(\Rightarrow\)-f(x)=5x (*)
\(\Rightarrow\)f(-x)=-5(-x) =5x (**)
Từ (*) và (**) \(\Rightarrow\)-f(x) =f(-x)
Bài 1: Cho hàm số Y= f(x)=k.x ( k là hằng số , k khác 0). Chứng minh rằng:
a, f(10x) =10.f(x)
b, f(x1 + x2 ) = f(x1) + f(x2)
Bài 2: cho các hàm số y=2x và y= \(\frac{18}{x}\)không vẽ đồ thị . Tìm tọa độ giao điểm của hàm số đã cho.
Bài 1: Cho hàm số Y= f(x)=k.x ( k là hằng số , k khác 0). Chứng minh rằng:
Giải thích các bước:
a)f(10x) = 10f(x)
ta có:
y= f (x) =kx
=>f(10x) = k(10x) =10kx (*)
=>10f(x) = 10kx (**)
Từ (*) và (**)
=> f(10x) =10f(x)
=>đpcm
b)
f(x1 - x2) = k.(x1 - x2) (1)
f(x1) - f(x2) = k.x1 - k.x2 = k.(x1 - x2) (2)
Từ (1) và (2) => đpcm
Giải thích các bước:
a)f(10x) = 10f(x)
ta có:
y= f (x) =kx
=>f(10x) = k(10x) =10kx (*)
=>10f(x) = 10kx (**)
Từ (*) và (**)
=> f(10x) =10f(x)
=>đpcm
b)
f(x1 - x2) = k.(x1 - x2) (1)
f(x1) - f(x2) = k.x1 - k.x2 = k.(x1 - x2) (2)
Từ (1) và (2) => đpcm
Cho hàm số y = f(x) = 3x.
Cho x hai giá trị bất kì x 1 , x 2 sao cho x 1 < x 2
Hãy chứng minh f ( x 1 ) < f ( x 2 ) rồi rút ra kết luận hàm số đã cho đồng biến trên R.
Cho x các giá trị bất kì x 1 , x 2 sao cho x 1 < x 2
= > x 1 - x 2 < 0
Ta có:
f x 1 = 3 x 1 ; f x 2 = 3 x 2 ⇒ f x 1 − f x 2 = 3 x 1 − 3 x 2 = 3 x 1 − x 2 < 0 ⇒ f x 1 < f x 2
Vậy với x 1 < x 2 ta được f ( x 1 ) < f ( x 2 ) nên hàm số y = 3x đồng biến trên tập hợp số thực R.
Cho hàm số y = f(x) = 3x.
Cho x hai giá trị bất kì x1, x2 sao cho x1 < x2.
Hãy chứng minh f(x1) < f(x2) rồi rút ra kết luận hàm số đã cho đồng biến trên R.
Cho x các giá trị bất kì x1, x2 sao cho x1 < x2
=> x1 - x2 < 0
Ta có: f(x1) = 3x1 ; f( x2) = 3x2
=> f(x1) - f(x2) = 3x1 - 3x2 = 3(x1 - x2) < 0
=> f(x1) < f(x2)
Vậy với x1 < x2 ta được f(x1) < f(x2) nên hàm số y = 3x đồng biến trên tập hợp số thực R.
Cho hàm số bậc nhất y = f(x) = 3x + 1.
Cho x hai giá trị bất kì x 1 , x 2 , sao cho x 1 < x 2 . Hãy chứng minh f ( x 1 ) < f ( x 2 ) rồi rút ra kết luận hàm số đồng biến trên R.
Do x 1 < x 2 nên x 1 − x 2 < 0
Ta có:
f x 1 − f x 2 = 3 x 1 + 1 − 3 x 2 + 1 = 3 x 1 − x 2 < 0 ⇔ f x 1 < f x 2
Vậy hàm số y = 3x + 1 đồng biến trên R
Cho hàm số bậc nhất y = f(x) = 3x + 1.
Cho x hai giá trị bất kì x1, x2, sao cho x1 < x2. Hãy chứng minh f(x1) < f(x2) rồi rút ra kết luận hàm số đồng biến trên R.
Do x1 < x2 nên x1 - x2 < 0
Ta có: f(x1 ) - f(x2 )=(3x1 + 1) - (3x2 + 1) = 3(x1 - x2 ) < 0
⇔ f(x1 ) < f(x2 )
Vậy hàm số y = 3x + 1 đồng biến trên R