Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phương Uyên
Xem chi tiết
Nguyễn Ngọc Huy Toàn
22 tháng 3 2022 lúc 13:10

a.Bạn thế vào nhé

b.\(\Delta=3^2-4m=9-4m\)

Để pt vô nghiệm thì \(\Delta< 0\)

\(\Leftrightarrow9-4m< 0\Leftrightarrow m>\dfrac{9}{4}\)

c.Ta có: \(x_1=-1\)

\(\Rightarrow x_2=-\dfrac{c}{a}=-m\)

d.Theo hệ thức Vi-ét, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1.x_2=m\end{matrix}\right.\)

1/ \(x_1^2+x_2^2=34\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=34\)

\(\Leftrightarrow\left(-3\right)^2-2m=34\)

\(\Leftrightarrow m=-12,5\)

..... ( Các bài kia tương tự bạn nhé )

Cạc NGU
Xem chi tiết

\(x^2-\left(m-1\right)x-2=0\)

a=1; b=-m+1; c=-2

Vì a*c=-2<0

nên phương trình luôn có hai nghiệm phân biệt

Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left[-\left(m-1\right)\right]}{1}=m-1\\x_1\cdot x_2=\dfrac{c}{a}=\dfrac{-2}{1}=-2\end{matrix}\right.\)

\(\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2\)

\(=\left(m-1\right)^2-4\cdot\left(-2\right)=\left(m-1\right)^2+8\)

=>\(x_1-x_2=\pm\sqrt{\left(m-1\right)^2+8}\)

\(\dfrac{x_1}{x_2}=\dfrac{x_2^2-3}{x_1^2-3}\)

=>\(x_1\left(x_1^2-3\right)=x_2\left(x_2^2-3\right)\)

=>\(x_1^3-x_2^3=3x_1-3x_2\)

=>\(\left(x_1-x_2\right)\left(x_1^2+x_2^2+x_1x_2-3\right)=0\)

=>\(\left(x_1-x_2\right)\left[\left(x_1+x_2\right)^2-x_1x_2-3\right]=0\)

=>\(\left[{}\begin{matrix}x_1-x_2=0\\\left(m-1\right)^2-\left(-2\right)-3=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}\sqrt{\left(m-1\right)^2+8}=0\left(vôlý\right)\\\left(m-1\right)^2-1=0\end{matrix}\right.\)

=>\(\left(m-1\right)^2=1\)

=>\(\left[{}\begin{matrix}m-1=1\\m-1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=2\\m=0\end{matrix}\right.\)

Nguyễn Thảo My
Xem chi tiết
Phùng Minh Quân
15 tháng 7 2019 lúc 17:57

1) \(x^2-2mx+m-2=0\) (1) 

pt (1) có \(\Delta'=\left(-m\right)^2-\left(m-2\right)=m^2-m+2=\left(m-\frac{1}{2}\right)^2+\frac{7}{4}>0\left(\forall m\right)\) 

=> pt luôn có 2 nghiệm phân biệt x1, x2 

Vi-et: \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=m-2\end{cases}}\)\(\Rightarrow\)\(M=\frac{2x_1x_2-\left(x_1+x_2\right)}{x_1^2+x_2^2-6x_1x_2}=\frac{2x_1x_2-\left(x_1+x_2\right)}{\left(x_1+x_2\right)^2-8x_1x_2}=\frac{2m-4-2m}{\left(2m\right)^2-8m-16}\)

\(=\frac{-4}{4m^2-8m-16}=\frac{-4}{4\left(m-1\right)^2-20}\ge\frac{-4}{-20}=\frac{1}{5}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(m=1\)

xin 1slot sáng giải

Nguyễn Ngân
Xem chi tiết
Nguyễn Huy Tú
15 tháng 4 2021 lúc 18:40

Để phương trình có 2 nghiệm phân biệt thì \(\Delta>0\)

hay \(\left(2m+2\right)^2-4\left(2m+2\right)=4m^2+8m+4-8m-8=4m^2-4>0\)

\(\Leftrightarrow4m^2>4\Leftrightarrow m^2>1\Leftrightarrow\left(m-1\right)\left(m+1\right)>0\Leftrightarrow\hept{\begin{cases}m>1\\m>-1\end{cases}\Leftrightarrow m>1}\)

Theo Vi et ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-2m-2\\x_1x_2=\frac{c}{a}=2m+2\end{cases}}\)

mà \(\left(x_1+x_2\right)^2=\left(2m+2\right)^2\Leftrightarrow x_1^2+x_2^2+2x_1x_2=4m^2+8m+4\)

\(\Leftrightarrow x_1^2+x_2^2=4m^2+8m+4-2\left(2m+2\right)=4m^2+8m+4-4m-4=4m^2-4m\)

Lại có : \(x_1^2+x_2^2=8\Rightarrow4m^2-4m-8=0\)

\(\Leftrightarrow4\left(m^2-m-2\right)=0\Leftrightarrow\left(m-2\right)\left(m+1\right)=0\Leftrightarrow\orbr{\begin{cases}m=2\left(chon\right)\\m=-1\left(loai\right)\end{cases}}\)

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
15 tháng 4 2021 lúc 20:38

Để pt có hai nghiệm phân biệt thì Δ' > 0

<=> ( m + 1 )2 - 2m - 2 > 0

<=> m2 + 2m + 1 - 2m - 2 > 0

<=> m2 - 1 > 0 => m > 1 hoặc m < -1

Theo hệ thức Viète ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-2m-2\\x_1x_2=\frac{c}{a}=2m+2\end{cases}}\)

Khi đó x12 + x22 = 8

<=> ( x1 + x2 )2 - 2x1x2 = 8

<=> 4m2 + 8m + 4 - 4m - 4 - 8 = 0

<=> 4m2 + 4m - 8 = 0

<=> m2 + m - 2 = 0

<=> ( m - 1 )( m + 2 ) = 0

<=> m = 1 ( loại ) hoặc m = -2 (tm)

Vậy ...

Khách vãng lai đã xóa
Sukem tv cute
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 3 2023 lúc 22:39

a. Em tự giải

b. Pt có 2 nghiệm khi \(\Delta=9-4\left(m-4\right)\ge0\Rightarrow m\le\dfrac{25}{4}\)

Khi đó theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1x_2=m-4\end{matrix}\right.\)

c.

\(x_1^3+x_2^3=8\)

\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=8\)

\(\Leftrightarrow\left(-3\right)^3-3.\left(-3\right).\left(m-4\right)=8\)

\(\Leftrightarrow m=\dfrac{71}{9}\)

Do huong giang
Xem chi tiết
vianhduc
11 tháng 8 2019 lúc 17:49

אני לא יודע איך

Hoàng Văn Anh
Xem chi tiết
nguyễn thị lan hương
Xem chi tiết
tth_new
23 tháng 2 2019 lúc 8:33

\(\left(m+1\right)x^2-2\left(m-1\right)x+m-3=0\) (1)

a) Phương trình (1) có 2 nghiệm phân biệt khi và chỉ khi:

\(\Delta'=\left(m-1\right)^2-\left(m+1\right)\left(m-3\right)>0\)

\(\Leftrightarrow\left(m^2-2m+1\right)-\left(m^2-2m-3\right)>0\) 

\(\Leftrightarrow4>0\)(luôn đúng)

Vậy phương trình có 2 nghiệm phân biệt với mọi m.

b) Để t nghĩ tí

nguyễn thị lan hương
23 tháng 2 2019 lúc 9:16

ý b kìa ý a mình biết rồi

cao van duc
23 tháng 2 2019 lúc 15:26

b,ta có x1.x2=\(\frac{c}{a}=\frac{m-3}{m+1}\)>0=>\(\orbr{\begin{cases}m< -1\\m>3\end{cases}}\)

theo viet ta có:\(x1+x2=\frac{-b}{a}=\frac{2\left(m-1\right)}{m+1}\)

                      mà x1=2x2

=>\(\hept{\begin{cases}x1=\frac{4\left(m-1\right)}{3\left(m+3\right)}\\x2=\frac{2\left(m-1\right)}{3\left(m+1\right)}\end{cases}}\)

thay vào P=x1.x2=c/a=\(\frac{m-3}{m+1}\)

=>tìm m đối chiếu đk 

Phạm Tuân
Xem chi tiết
lê văn tám
Xem chi tiết
shitbo
13 tháng 6 2021 lúc 17:06

Xét phương trình: \(x^2-2\left(m+3\right)x+2m+5=0\Rightarrow\Delta'=\left(m+3\right)^2-2m-5=\left(m+2\right)^2\ge0\) .

Do đó phương trình luôn có 2 nghiệm và để phương trình có 2 nghiệm phân biệt thì \(m\ne-2.\)

Theo định lý viet thì ta có: \(\hept{\begin{cases}x_1+x_2=2m+6\\x_1x_2=2m+5\end{cases}}\). Do đó: \(m>-\frac{5}{2}\)\(\frac{1}{\sqrt{x_1}}+\frac{1}{\sqrt{x_2}}=\frac{4}{3}\Rightarrow\frac{1}{x_1}+\frac{1}{x_2}+2\sqrt{\frac{1}{x_1x_2}}=\frac{x_1+x_2}{x_1x_2}+2\sqrt{\frac{1}{2m+5}}=\frac{16}{9}\)

\(\Leftrightarrow\frac{2m+6}{2m+5}+2\sqrt{\frac{1}{2m+5}}=\frac{1}{2m+5}+2\sqrt{\frac{1}{2m+5}}+1=\left(\sqrt{\frac{1}{2m+5}}+1\right)^2=\frac{16}{9}\)

\(\Rightarrow\sqrt{\frac{1}{2m+5}}=\frac{1}{3}\Leftrightarrow\frac{1}{2m+5}=\frac{1}{9}\Leftrightarrow2m+5=9\Leftrightarrow m=2.\)

Vậy \(m=2.\)

Khách vãng lai đã xóa