1. kiểm tra xem mỗi số x=1 ; x = 3 có phải là một nghiệm của đa thức sao không
P(x) = x^2 - 4x + 3
Kiểm tra xem:
Mỗi số x = 1; x = 3 có phải là một nghiệm của đa thức Q(x) = x2 – 4x + 3 không.
Ta có: Q(1) = 12 – 4.1 + 3 = 1 – 4 + 3 = 0
⇒ x = 1 là nghiệm của Q(x)
Q(3) = 32 – 4.3 + 3 = 9 – 12 + 3 = 0
⇒ x = 3 là nghiệm của Q(x)
Vậy x = 1 ; x = 3 là nghiệm của Q(x).
Kiểm tra xem trong các số – 1, 0, 1, 2, số nào là nghiệm của mỗi đa thức sau:
a) \(3x - 6\); b) \({x^4} - 1\);
c) \(3{x^2} - 4x\); d) \({x^2} + 9\).
a) Thay các giá trị – 1, 0, 1, 2 vào biểu thức ta được:
\(\begin{array}{l}3.( - 1) - 6 = - 3 - 6 = - 9\\3.0 - 6 = 0 - 6 = - 6\\3.1 - 6 = 3 - 6 = - 3\\3.2 - 6 = 6 - 6 = 0\end{array}\)
Vậy 2 là nghiệm của đa thức \(3x - 6\).
b) Thay các giá trị – 1, 0, 1, 2 vào biểu thức ta được:
\(\begin{array}{l}{( - 1)^4} - 1 = 1 - 1 = 0\\{0^4} - 1 = 0 - 1 = - 1\\{1^4} - 1 = 1 - 1 = 0\\{2^4} - 1 = 16 - 1 = 15\end{array}\)
Vậy 1 và – 1 là nghiệm của đa thức \({x^4} - 1\)
c) Thay các giá trị – 1, 0, 1, 2 vào biểu thức ta được:
\(\begin{array}{l}3.{( - 1)^2} - 4.( - 1) = 3 + 4 = 7\\{3.0^2} - 4.0 = 0 - 0 = 0\\{3.1^2} - 4.1 = 3 - 4 = - 1\\{3.2^2} - 4.2 = 12 - 8 = 4\end{array}\)
Vậy 0 là nghiệm của đa thức \(3{x^2} - 4x\).
d) Thay các giá trị – 1, 0, 1, 2 vào biểu thức ta được:
\(\begin{array}{l}{( - 1)^2} + 9 = 1 + 9 = 10\\{0^2} + 9 = 0 + 9 = 9\\{1^2} + 9 = 1 + 9 = 10\\{2^2} + 9 = 4 + 9 = 13\end{array}\)
Vậy không giá trị nào là nghiệm của đa thức \({x^2} + 9\).
Kiểm tra xem: Mỗi số x = 1; x = 3 có phải là một nghiệm của đa thức Q(x) = x2 - 4x + 3 không.
Ta có: Q(1) = 12 - 4.1 + 3 = 1 - 4 + 3 = 0 => x = 1 là nghiệm của Q(x)
Q(3) = 32 - 4.3 + 3 = 9 - 12 + 3 = 0
Vậy x = 1; x = 3 là nghiệm của Q(x).
Kiểm tra xem:
a) x = 1/10 có phải là nghiệm của đa thức P(x) = 5x + 1/2 không.
b) Mỗi số x = 1; x = 3 có phải là một nghiệm của đa thức Q(x) = x2 - 4x + 3 không.
Kiểm tra xem nguyên hàm nào là một nguyên hàm của hàm số còn lại trong mỗi cặp hàm số sau:
f x = ln x + 1 + x 2 và g x = 1 1 + x 2
Hàm số f x = ln x + 1 + x 2
là một nguyên hàm của g x = 1 1 + x 2
Kiểm tra xem:
a) x = 1/10 có phải là nghiệm của đa thức P(x) = 5x + 1/2 không.
b) Mỗi số x = 1; x = 3 có phải là một nghiệm của đa thức Q(x) = x2 - 4x + 3 không.
trong các bài kiểm tra Lan đều đạt được 8,9 hoặc 10.số điểm các bài kiểm tra cộng lại là 100 điểm tính xem lan đã làm bao nhiêu bài kiểm tra và mỗi loại có bao nhiêu bài biết số bài kiểm tra của lan lớn hơn 11 bài
Hãy kiểm tra xem mỗi cặp số sau có phải là một nghiệm của hệ phương trình tương ứng hay không?
(1; 8) 5 x + 2 y = 9 x - 14 y = 5
Thay x = 1, y = 8 vào từng phương trình của hệ:
5.1 + 2.8 = 5 + 16 = 21 ≠ 9
Vậy (1; 8) không là nghiệm của hệ phương trình 5 x + 2 y = 9 x - 14 y = 5
Bài 1.
a) Kiểm tra xem trong giá trị y = -2, y = 1, giá trị nào là nghiệm của phương trình (y + 1)2 = 2y + 5.
b) Kiểm tra xem trong các giá trị x = -3, x = 1, giá trị nào là nghiệm của phương trình (x + 2)2 = 4x + 5.
c) Kiểm tra xem trong các giá trị t = -1, t = 3, giá trị nào là nghiệm của phương trình (2t + 1)2 = 4t + 5.
d) Kiểm tra xem trong các giá trị z = -2, z = 1, giá trị nào là nghiệm của phương trình (z + 3)2 = 6z + 10.
a, +) Thay y = -2 vào phương trình trên ta có :
( -2 + 1 )2 = 2 . ( -2 ) + 5
1 = 1
Vậy y = -2 thỏa mãn phương trình trên
+) Thay y = 1 vào phương trình trên , ta có :
( 1 + 1)2 = 2 . 1 + 5
4 = 7
Vậy y = 1 thỏa mãn phương trình trên
b, +) Thay x =-3 vaò phương trình trên , ta có :
( -3 + 2 )2 = 4 . ( -3 ) + 5
2 = -7
Vậy x = -3 không thỏa mãn phuong trình trên
+) Thay x = 1 vào phương trình trên , ta có :
( 1 + 2 )2 = 4 . 1 + 5
9 = 9
Vậy x = 1 thỏa mãn phương trình trên
c, +) Thay t = -1 vào phương trình , ta có :
[ 2 . ( -1 ) + 1 ]2 = 4 . ( -1 ) + 5
1 = 1
Vậy t = -1 thỏa mãn phương trình trên
+) Thay t = 3 vào phương trình trên , ta có :
( 2 . 3 + 1 )2 = 4 . 3 + 5
49 = 17
Vậy t = 3 không thỏa mãn phương trình trên
d, +) Thay z = -2 vào phương trình trên , ta có :
( -2 + 3 )2 = 6 . ( -2 ) + 10
1 = -2
Vậy z = -2 không thỏa mãn phương trình trên
+) Thay z = 1 vào phương trình trên , ta có :
( 1 + 3 )2 = 6 . 1 + 10
16 = 16
Vậy z =1 thỏa mãn phương trình trên