Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phanh Hà
Xem chi tiết
con gai luon luon dung
18 tháng 12 2015 lúc 18:09

Tick , rồi mình trả lời cho

TeaMiePham
Xem chi tiết
Lê Thanh Thúy
Xem chi tiết
Xích U Lan
Xem chi tiết
Trương Huy Hoàng
9 tháng 5 2021 lúc 13:47

a, Xét đường tròn (O) có: \(\Delta\)BKD nội tiếp; BD là đường kính

\(\Rightarrow\) \(\Delta\)BKD vuông tại K (sự xác định đường tròn)

\(\Rightarrow\) BK \(\perp\) KD

Mà C \(\in\) BK \(\Rightarrow\) CK \(\perp\) KD

Xét \(\Delta\)CKD và \(\Delta\)CAB có:

\(\widehat{CKD}=\widehat{CAB}=90^o\)

\(\widehat{C}\) chung

\(\Rightarrow\) \(\Delta\)CKD ~ \(\Delta\)CAB (gg)

\(\Rightarrow\) \(\dfrac{CK}{CA}=\dfrac{CD}{CB}\) (tỉ số đồng dạng)

\(\Rightarrow\) CK.CB = CD.CA (đpcm)

b, Xét tam giác ABD có: AB = AD (gt)

\(\Rightarrow\) \(\Delta\)ABD cân tại A (dhnb)

Mà AO là trung tuyến ứng với BD của \(\Delta\)ABD (O là tâm của đường tròn đk BD)

\(\Rightarrow\) AO là đường cao ứng với BD (tính chất tam giác cân)

\(\Rightarrow\) \(\widehat{AOB}\) = 90o

Xét tứ giác BHOA có: \(\widehat{BHA}=\widehat{BOA}=90^o\) (AH là đường cao; cmt)

Hai góc có đỉnh kề nhau cùng nhìn cạnh AB dưới 1 góc vuông ko đổi

\(\Rightarrow\) BHOA là tứ giác nội tiếp (dhnb tứ giác nội tiếp)

\(\Rightarrow\) \(\widehat{AHO}=\widehat{ABO}\) (2 góc nội tiếp cùng chắn \(\stackrel\frown{AO}\)) (1)

Xét tam giác ABD cân tại A có: \(\widehat{BAD}=90^o\) (tam giác ABD vuông tại A)

\(\Rightarrow\) Tam giác ABD vuông cân tại A 

\(\Rightarrow\) \(\widehat{ABD}\) = 45o (t/c tam giác vuông cân) (2)

Từ (1) và (2) \(\Rightarrow\) \(\widehat{AHO}=45^o\)

Chúc bn học tốt!

Nguyễn Thị Ngọc Anh
Xem chi tiết
Rhider
5 tháng 2 2022 lúc 15:43

a) Xét tứ giác  \(ADBC\) ta có :

\(IB=IA\left(g.t\right)\)

\(IC=IC\) ( \(D\) đối xứng qua \(I\))

Vì tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường 

Vậy tứ giác \(ADBC\) là hình bình hành 

b) Xét \(\Delta ABC\) ta có :

\(IA=IB\left(g.t\right)\)

\(MB=MC\left(g.t\right)\)

\(\Rightarrow IM\) là đường trung bình \(\Delta ABC\)

Do đó : \(IM\text{/ / }AC\)

Mà \(AB\text{⊥}AC\left(A=90^o\right)\)

Vậy \(IM\text{⊥}AB\)

Áp dụng định lí pytago  \(\Delta ABC\) ta có :

\(BC^2=AB^2+AC^2\)

\(\Rightarrow AB=\sqrt{BC^2-AC^2}=\sqrt{13^2-5^2}=12\left(cm\right)\)

\(S_{\Delta ABC}=\dfrac{1}{2}.AB.AC=\dfrac{1}{2}.13.5=30\left(cm^2\right)\)

undefined

 

Thúy Lê thanh
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 12 2020 lúc 21:47

a) Xét ΔAMF có 

AE là đường cao ứng với cạnh MF(\(AE\perp MF\))

AE là đường trung tuyến ứng với cạnh MF(E là trung điểm của MF)

Do đó: ΔAMF cân tại A(Định lí tam giác cân)

hay AM=AF(1)

Xét ΔCFM có 

CE là đường cao ứng với cạnh MF(\(CE\perp MF\))

CE là đường trung tuyến ứng với cạnh MF(E là trung điểm của MF)

Do đó: ΔCFM cân tại C(Định lí tam giác cân)

hay CM=CF(2)

Vì ΔABC vuông tại A(gt) có AM là đường trung tuyến ứng với cạnh huyền BC(M là trung điểm của BC)

nên \(AM=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

mà \(CM=BM=\dfrac{BC}{2}\)(M là trung điểm của BC)

nên AM=CM=BM(3)

Từ (1), (2) và (3) suy ra AM=AF=CF=CM=BM

Xét tứ giác AMCF có AM=CM=CF=FA(cmt)

nên AMCF là hình thoi(Dấu hiệu nhận biết hình thoi)

b)

Sửa đề: Tìm điều kiện của ΔABC để tứ giác AMCF là hình vuông

Hình thoi AMCF trở thành hình vuông khi  \(\widehat{AMC}=90^0\)

hay \(AM\perp BC\)

Xét ΔABC có 

AM là đường cao ứng với cạnh BC(\(AM\perp BC\))

AM là đường trung tuyến ứng với cạnh BC(M là trung điểm của BC)

Do đó: ΔABC cân tại A(Định lí tam giác cân)

hay AB=AC

Vậy: Khi ΔABC có thêm điều kiện AB=AC thì AMCF trở thành hình vuông

c)

Ta có: MD\(\perp\)AB(gt)

AC\(\perp\)AB(ΔABC vuông tại A)

Do đó: MD//AC(Định lí 1 từ vuông góc tới song song)

Xét ΔABC có 

M là trung điểm của BC(gt)

MD//AC(cmt)

Do đó: D là trung điểm của AB(Định lí 1 đường trung bình của tam giác)

Xét ΔABC có 

M là trung điểm của BC(gt)

D là trung điểm của AB(cmt)

Do đó: MD là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

nên \(MD=\dfrac{AC}{2}\)(Định lí 2 đường trung bình của tam giác)(1)

Ta có: \(ME\perp AC\)(gt)

\(AB\perp AC\)(ΔABC vuông tại A)

Do đó: ME//AB(Định lí 1 từ vuông góc tới song song)

Xét ΔABC có 

M là trung điểm của BC(gt)

ME//AB(cmt)

Do đó: E là trung điểm của AC(Định lí 1 đường trung bình của tam giác)

nên \(CE=\dfrac{AC}{2}\)(2)

Từ (1) và (2) suy ra MD=CE

Xét tứ giác CMDE có 

MD//CE(MD//AC)

MD=CE(cmt)

Do đó: CMDE là hình bình hành(Dấu hiệu nhận biết hình bình hành)

nên Hai đường chéo CD và EM cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)

mà I là trung điểm của EM(gt)

nên I là trung điểm của CD(đpcm)

Đạt Bênh
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 5 2023 lúc 8:07

a: Xét ΔBAH vuông tại A và ΔBMH vuông tại M có

BH chung

góc ABH=góc MBH

=>ΔBAH=ΔBMH

b: Xét ΔHAN vuông tại A và ΔHMC vuông tại M có

HA=HM

góc AHN=góc MHC

=>ΔHAN=ΔHMC

c: BN=BC

HN=HC

=>BH là trung trực của NC

=>BH vuông góc NC

c: BH là trung trực của NC

K là trung điểm của NC

=>B,H,K thẳng hàng

Xích U Lan
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 5 2021 lúc 22:42

a) Ta có: ΔABD vuông tại A(gt)

nên A nằm trên đường tròn đường kính BD(Định lí quỹ tích cung chứa góc)

mà BD là đường kính của (O)

nên A\(\in\)(O)(Đpcm)

Nguyễn Lê Phước Thịnh
8 tháng 5 2021 lúc 22:43

b) Xét (O) có 

\(\widehat{AKB}\) là góc nội tiếp chắn cung AB

\(\widehat{ADB}\) là góc nội tiếp chắn cung AB

Do đó: \(\widehat{AKB}=\widehat{ADB}\)(Hệ quả góc nội tiếp)

Anh PVP
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 3 2023 lúc 21:26

a: AB<AC<BC
=>góc C<góc B<góc A

b: Xet ΔABC có

BC^2=AB^2+AC^2

=>ΔBCA vuông tại A

Xet ΔCAB vuông tại A và ΔCAD vuông tại A có

CA chung

AB=AD

=>ΔCAB=ΔCAD

c: Xét ΔCBD có

CA,BE là trung tuyến

CA cắt BE tại I

=>I là trọng tâm

=>DI đi qua trung điểm của BC

Tsumi Akochi
Xem chi tiết
Tu Nguyen Anh
22 tháng 12 2016 lúc 21:14

Hình bạn tự vẽ nha

a) CMR Tứ giác BDCN là hình bình hành

Vì D đối xứng N qua M (gt) => M là trung điểm của DM (đn)

Xét tứ giác BDCN có

M là trung điểm BC (gt)

M là trung điểm DM (cmt)

=> Tứ giác BDCN là hbh (dhnb hbh)

b) CMR AD=BN

Vì BDCN là hbh( cmt) => BD//NC => BD//AN (1) và BD=NC

mà NC=AN (N là trung điểm AC)

=> BD=NC (bắc cầu) (2)

Mà BAC=90 (gt) (3)

Từ (1) và (2), (3)=> BDNA hcn (dhnb hcn)=> AD=BN (t/c đường chéo hcn)

c) CMR EC=2DE

Xét tam giác ACE có

N là trung điểm AC (gt)

FN//EC (BN//DC)

=> F là trung điểm của AE ( định lý đường trung bình)

mà N là trung điểm của AC (gt)

=> FN là đường TB của tam giác AEC ( đn)

=> FN= 1/2 EC (1)

Xét tam giác FNM=tam giác EMD (cgc)

=> DE=FN ( 2 góc t/ư)(2)

Từ (1) và (2) => DE=1/2 EC ( bắc cầu)

 

Ling ling 2k7
8 tháng 12 2020 lúc 21:17

Đề bài sai thì làm thế nào?

Tại sao tam giác ABC vuông tại H?Vuông tại A đúng ko?

Khách vãng lai đã xóa