Cho tam giác nhọn ABC, hai đường cao BD và CE. Qua D kẻ DF vuông góc với AB (F thuộc AB); qua E kẻ EG vuông góc với AC. Chứng minh:
a) A D . A E = A B . A G = A C . AF;
b) FG song song với BC
Cho tam giác ABC nhọn, hai đường cao BD và CE. Qua D kẻ DF vuông góc với AB, F thuộc AB. Qua E kẻ EG vuông góc với AC, G thuộc AC. Chứng minh: a) AD. AE = AB. AGAC. AF. b) FG // BC.
a: Ta có: EG\(\perp\)AC
BD\(\perp\)AC
Do đó: EG//BD
Xét ΔABD có EG//BD
nên \(\dfrac{AE}{AB}=\dfrac{AG}{AD}\)
=>\(AE\cdot AD=AB\cdot AG\)(1)
Ta có: DF\(\perp\)AB
CE\(\perp\)AB
Do đó: DF//CE
Xét ΔAEC có DF//CE
nên \(\dfrac{AD}{AC}=\dfrac{AF}{AE}\)
=>\(AD\cdot AE=AC\cdot AF\)(2)
Từ (1) và (2) suy ra \(AE\cdot AD=AB\cdot AG=AC\cdot AF\)
b: AB*AG=AC*AF
=>\(\dfrac{AG}{AC}=\dfrac{AF}{AB}\)
Xét ΔABC có \(\dfrac{AG}{AC}=\dfrac{AF}{AB}\)
nên FG//BC
cho tam giác ABC, 2đường cao BD và CE. qua D kẻ DF vuông góc AB (F thuộc AB ), qua E kẻ EG vuông góc AC .chứng minh
a,AD.AE=AB.AG=AC.AF
b,EF//BC
mình thích toán nhưng ko đồng ngĩa là mình giỏi toán
a, Xét 4 tam giác AFD, AGE, ADB, AEC có:
\(\widehat{A}\) chung
\(\widehat{AFD\:}=\widehat{AGE}=\widehat{ADB}=\widehat{AEC}=90^o\) (Do DF, EG, CE, BD là các đường cao của \(\Delta\)ABC)
\(\Rightarrow\) AFD ~ AGE ~ ADB ~ AEC (gg)
Từ đó suy ra các cạnh tương ứng tỉ lệ rồi suy ra đpcm
b, Vì CE, DF là các đường cao ứng với AB (gt)
\(\Rightarrow\) E, F \(\in\) AB
\(\Rightarrow\) EF không // với BC (Đề sai)
Chúc bn học tốt!
Cho tam giác ABC có 3 góc nhọn, đường cao BD ( D thuộc AC). Kẻ DE vuông góc với BC tại E.
a) CMR tam giác BDE đồng dạng với tam giác BCD
b) Kẻ DF vuông góc với AB tại F. CMR: BD2 = BF.BA
c) CMR góc BFE = góc BCA
d) Vẽ CG vuông góc với AB tại G. Đoạn thẳng EF cắt GD tại F. CMR H là trung điểm của GD
cho tam giác ABC có B và C là góc nhọn. Qua B kẻ đoạn thẳng BD vuông góc với AC ( D thuộc AC ). Qua C kẻ đường thẳng CE vuông góc với AB ( E thuộc AB ). Gọi H là giao điểm BD và CE. Hãy tìm mối liên hệ giữa:
a, ABD và ACE
b, A và DHE
Cho tam giác ABC nhọn có AB>AC. Kẻ đường cao BD và CE. Lấy F thuộc AB sao cho AF=AC. Kẻ FI vuông góc với AC tại I.
a) So sánh: FI và CE
b) Kẻ FH vuông góc với BD ở H. C/m FI=HD
c) C/m AB-AC>BD-CE
Cho tam giác nhọn ABC : BD và CE là đường cao. Từ D kẻ DF sao cho DF vuông góc AB, từ E kẻ EG sao cho vuông góc AC.
a) CM : AD.AE=AB.AG=AC.AF
b) CM : FG // BC
a) \(\Delta\)AGE và \(\Delta\)ADB vuông có ^A chung nên \(\Delta AGE~\Delta ADB\)
\(\Rightarrow\frac{AG}{AD}=\frac{AE}{AB}\Rightarrow AG.AB=AD.AE\)(1)
\(\Delta\)AFD và \(\Delta\)AEC vuông có ^A chung nên\(\Delta AFD~\Delta AEC\)
\(\Rightarrow\frac{AF}{AE}=\frac{AD}{AC}\Rightarrow AF.AC=AE.AD\)(2)
Từ (1) và (2) suy ra AD.AE = AB.AG = AC.AF (đpcm)
b) Ta đã chứng minh AB.AG = AC.AF (câu a)
\(\Rightarrow\frac{AG}{AC}=\frac{AF}{AB}\)
\(\Rightarrow FG//BC\)(Theo định lý Thales đảo)
Vậy FG // BC (đpcm)
Bài 1: Cho tam giác ABC nhọn có BD vuông góc với AC tại D. CE vuông góc với AB tại E. Chứng minh rằng: BD + CE < AB + AC.
Bài 2: Cho tam giác ABC,điểm D nằm giữa A và C ( BD không vuông góc với AC). Gọi E. và F là chân các đường vuông góc kẻ từ A và C đến đường thẳng BD. So sánh AC với tổng AE + CF.
Bài 3: Cho tam giác ABC, từ A hạ AH vuông góc với BC ( H thuộc BC). Chứng minh AH < AB + AC/2
Mọi người giúp mình với ạ. Mình cần gấp. Cảm ơn ạ
Bài 1:
ΔABD vuông tại D
=>BD<AB
ΔACE vuông tại E
=>CE<AC
=>BD+CE<AB+AC
Bài 12: Cho hình thang ABCD có hai đáy là AB và CD, M là trung điểm của AB, O là giao điểm của AB và CD. OM cắt CD tại N. Chứng minh N là trung điểm CD.
Bài 13: Cho tam giác nhọn ABC, hai đường cao BD và CE. Qua D kẻ DF vuông góc với AB (F∈ AB); qua E kẻ EG vuông góc với AC. Chứng minh:
a) AD.AE=AB.AG=AC.AF
b) FG song song với BC.
Cho tam giác ABC có và là góc nhọn. Qua B kẻ đoạn thẳng BD vuông góc với AC (D ∈ AC). Qua C kẻ đường thẳng CE vuông góc với AB (E ∈ AB). Gọi H là giao điểm BD và CE. Hãy tìm mối liên hệ giữa:
a) và ;
b) và .