Chứng minh với mọi số n \(\inℕ\) ; n>1 ta có:
A=\(\dfrac{1}{2^3}+\dfrac{1}{3^3}+\dfrac{1}{4^3}+...+\dfrac{1}{n^3}< \dfrac{1}{4}\)
Chứng minh rằng với mọi số n\(\inℕ\)( n lẻ ) thì n^3+4n^2+3n \(⋮\)8
Ta có :
\(n^3+4n^2+n\) \(=n\left(n^2+4n+1\right)\)\(=n\left(n^2+n+3n+3\right)\)\(=n\left(n+1\right)\left(n+3\right)\)
Vì n và n+1 là 2 số tự nhiên liên tiếp => n(n+1) chia hết cho 2 (1)
Vì n lẻ => n+1 và n+3 là 2 số chẵn liên tiếp => ( n+1 )( n+3 ) chia hết cho 4 (2)
Từ (1) và (2) => n(n+1)(n+3) chia hết cho 8
hay \(n^3+4n^2+n⋮8\)
Chứng minh rằng: \(Q=n^3+\left(n+1\right)^3+\left(n+2\right)^3⋮9\) với mọi \(n\inℕ^∗\)
\(Q=n^3+\left(n+1\right)^3+\left(n+2\right)^3⋮9\)
\(Q=n^3+n^3+3n^2+3n+1+n^3+6n^2+12n+8\)
\(Q=3n^3+9n^2+15n+9\)
\(Q=3n\left(n^2+5\right)+9\left(n^2+1\right)\)
mà \(\left\{{}\begin{matrix}9\left(n^2+1\right)⋮9\\3n⋮3\\n^2+5⋮3\end{matrix}\right.\left(\forall n\inℕ^∗\right)\)
\(\Rightarrow Q=3n\left(n^2+5\right)+9\left(n^2+1\right)⋮9,\forall n\inℕ^∗\)
\(\Rightarrow dpcm\)
Với mọi \(m\inℤ^+\), ta kí hiệu \(\sigma\left(n\right)\) là tổng các ước nguyên dương của \(n\) (bao gồm cả chính nó).
a) Chứng minh rằng, nếu \(\sigma\left(n\right)\) là số lẻ thì \(n=2^r.l^2\) với \(r,l\inℕ\), trong đó \(l\) là số lẻ.
b) Số tự nhiên \(n\) được gọi là "hoàn hảo" khi và chỉ khi \(\sigma\left(n\right)=2n\). CMR nếu \(n\) là số hoàn hảo chẵn thì \(n=2^{m-1}\left(2^m-1\right)\) với \(m\inℕ,m\ge2\) sao cho \(2^m-1\) là số nguyên tố.
Câu đầu tiên của đề bài là "Với mọi \(n\inℤ^+\)..." chứ không phải \(m\) nhé, mình gõ nhầm.
a) Ta phân tích \(n=x_1^{a_1}.x_2^{a_2}...x_m^{a_m}\) (với \(x_1;x_2;..x_n\) là số nguyên tố ;
\(a_1;a_2;..a_m\inℕ^∗\) và là số mũ tối đa của mỗi số nguyên tố )
Khi đó ta có \(\sigma\left(n\right)=\left(a_1+1\right)\left(a_2+1\right)...\left(a_m+1\right)\)
mà \(\sigma\left(n\right)\) lẻ \(\Leftrightarrow\) \(a_1+1;a_2+1;...a_m+1\) lẻ
\(\Leftrightarrow a_1;a_2;..a_m\) chẵn
\(\Leftrightarrow n\) là số chính phương
=> n luôn có dạng \(n=l^2\)
Mặt khác \(x_1;x_2;..x_m\) là số nguyên tố
Nếu \(x_1;x_2;..x_m\) đều là số nguyên tố lẻ thì l lẻ
<=> r = 0 nên n = 2r.l2 đúng (1)
Nếu \(x_1;x_2;..x_m\) tồn tại 1 cơ số \(x_k=2\)
TH1 : \(a_k\) \(⋮2\)
\(\Leftrightarrow a_k+1\) lẻ => \(\sigma\left(n\right)\) lẻ (thỏa mãn giả thiết)
=> n có dạng n = 2r.l2 (r chẵn , l lẻ)(2)
TH2 : ak lẻ
Ta dễ loại TH2 vì khi đó \(a_k+1⋮2\) nên \(\sigma\left(n\right)⋮2\) (trái với giả thiết)
Nếu \(n=2^m\) (m \(⋮2\)) thì r = m ; l = 1 (tm) (3)
Từ (1);(2);(3) => ĐPCM
Chứng minh rằng với mọi \(n\inℕ^∗\)thì A = 23n+1 + 23n-1 + 1 là hợp số.
CHỨNG MINH RẰNG: \(\sqrt{1^3+2^3+3^3+...+n^3}=\frac{\left(n+1\right)n}{2}\) VỚI MỌI \(n\inℕ^∗\)
Đặt
\(A_k=1+2+3+....+k=\frac{k\left(k+1\right)}{2}\)
\(A_{k-1}=1+2+3+....+\left(k-1\right)=\frac{k\left(k-1\right)}{2}\)
Ta có:
\(A_k^2-A_{k-1}^2=\frac{k^2\left(k+1\right)^2}{2}-\frac{\left(k-1\right)^2k^2}{2}=\frac{k^2}{2}\left(k^2+2k+1-k^2+2k-1\right)=k^3\)
Khi đó:
\(1^3=A_1^2\)
\(2^3=A_2^2-A_1^2\)
\(...........\)
\(n^3=A_n^2-A_{n-1}^2\)
Khi đó:
\(1^3+2^3+3^3+...+n^3=A_n^3=\left[\frac{n\left(n+1\right)}{2}\right]^2\)
\(\Rightarrow\sqrt{1^3+2^3+......+n^3}=\frac{n\left(n+1\right)}{2}\)
=> ĐPCM
Cách khác:
Ta sẽ đi chứng minh \(1^3+2^3+3^3+....+n^3=\left[\frac{n\left(n+1\right)}{2}\right]^2\)
Với n=1 thì mệnh đề trên đúng
Giả sử mệnh đề trên đúng với n=k ta sẽ chứng minh mệnh đề đúng với n=k+1
Ta có:
\(A_k=1^3+2^3+3^3+.....+k^3=\left[\frac{k\left(k+1\right)}{2}\right]^2\)
Ta cần chứng minh:
\(A_{k+1}=1^3+2^3+3^3+.....+\left(k+1\right)^3=\left[\frac{\left(k+1\right)\left(k+2\right)}{2}\right]^2\)
Thật vậy !
\(A_{k+1}=1^3+2^3+3^3+.....+\left(k+1\right)^3\)
\(=\left[\frac{k\left(k+1\right)}{2}\right]^2+\left(k+1\right)^3\)
\(=\frac{k^2\left(k+1\right)^2}{4}+\left(k+1\right)^3\)
\(=\left(k+1\right)^2\left(\frac{k^2}{4}+k+1\right)\)
\(=\left[\frac{\left(k+1\right)\left(k+2\right)}{2}\right]^2\)
Theo nguyên lý quy nạp ta có điều phải chứng minh.
Chứng minh: Số có dạng \(n^6-n^4+2n^3+2n^2\) với \(n\inℕ\) và \(n>1\) không phải là số chính phương.
\(=n^2\left(n^4-n^2+2n+2\right)=\)
\(=n^2\left[n^2\left(n^2-1\right)+2\left(n+1\right)\right]=\)
\(=n^2\left[n^2\left(n-1\right)\left(n+1\right)+2\left(n+1\right)\right]=\)
\(=n^2\left[\left(n+1\right)\left(n^3-n^2+2\right)\right]=\)
\(=n^2\left\{\left(n+1\right)\left[\left(n^3+1\right)-\left(n^2-1\right)\right]\right\}=\)
\(=n^2\left\{\left(n+1\right)\left[\left(n^3+1\right)-\left(n-1\right)\left(n+1\right)\right]\right\}=\)
\(=n^2\left\{\left(n+1\right)\left[\left(n+1\right)\left(n^2-n+1\right)-\left(n-1\right)\left(n+1\right)\right]\right\}=\)
\(=n^2\left(n+1\right)^2\left(n^2-n+1\right)-n^2\left(n+1\right)^2\left(n-1\right)=\)
\(=n^2\left(n+1\right)^2\left[\left(n^2-n+1\right)-\left(n-1\right)\right]=\)
\(=n^2\left(n+1\right)^2\left(n^2-2n+2\right)\) Giả sử đây là số chính phương
\(\Rightarrow n^2-2n+2\) Phải là số chính phương
Ta có
\(n^2-2n+2=\left(n-1\right)^2+1\Rightarrow n^2-2n+2>\left(n-1\right)^2\) (1)
Ta có
\(n^2-2n+2=n^2-2\left(n-1\right)\) Với n>1
\(\Rightarrow n^2-2n+2< n^2\) (2)
Từ (1) và (2)
\(\Rightarrow\left(n-1\right)^2< n^2-2n+2< n^2\)
Mà \(\left(n-1\right)^2\) và \(n^2\) là hai số chính phương liên tiếp nên \(n^2-2n+2\) không phải là số chính phương
=> Biểu thức đề bài đã cho không phải là số chính phương
Các bạn ơi giúp mik nhanh nhé đang cần gấp:
Với mọi \(n\inℕ\), chứng minh rằng\(n.\left(n+3\right)\)luôn \(⋮2\)
Neu n la so chan thi n(n+3) chia het cho 2
Neu n la so le thi n+3 la so chan (vi le +le = chan)
=> n(n+3) chia het cho 2
vay n(n+3) chia het cho 2 voi moi n la stn
Chứng minh \(\forall n\inℕ^∗\) thì \(n^3+n+2\) là hợp số
\(P=n^3+n+2\)
\(=\left(n^3+1\right)+\left(n+1\right)\)
\(=\left(n+1\right).\left(n^2-n+1\right)+n+1\)
\(=\left(n+1\right).\left(n^2-n+2\right)\)
Nhận thấy với \(n\inℕ^∗\Rightarrow n+1>0;n^2-n+2>0\)
nên P là hợp số
Chứng minh: \(1\cdot2\cdot3+2\cdot3\cdot4+...+n\left(n+1\right)\left(n+2\right)=\frac{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}{4}\) với mọi \(n\inℕ\)
A = 1.2.3 + 2.3.4 + 3.4.5 ... + n(n + 1)(n + 2)
4A = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 + ... + n(n + 1)(n + 2).4
4A = 1.2.3.4 + 2.3.4(5 - 1) + 3.4.5.(6 - 2)+ ... + n(n + 1)(n + 2)[(n + 3) - (n - 1)]
4A = 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + 3.4.5.6 - 2.3.4.5 + ... + n(n + 1)(n + 2)(n + 3) - (n-1)n(n+1)(n+2)
4A = n(n+1)(n+2)(n+3)
A = n(n + 1)(n+2)(n + 3) : 4