Cho tam giác ABC có chu vi 2p ngoại tiếp (I;r). Gọi a,b,c; ha,hb,hc thứ tự là độ dài và chiều cao tương ứng cạnh BC,CA,AB. Chứng minh:
a) 1/ha + 1/hb + 1/hc = 1/r
b) ha + hb + hc =2pr( 1/a + 1/b + 1/c )
chứng minh rằng tam giác ABC có chu vi 2p ngoại tiếp đường tròn (I ,r )thì diện tích S cửa tam giác có công thức S=p.r
Gọi O là tâm đường tròn nội tiếp tam giác ABC .Nối OA, OB, OC
Nối OA, OB, OC.Khoảng cách từ tâm O đến các tiếp điểm là đường cao của các tam giác OAB, OAC, OBC.
Ta có:
Mà AB + AC + BC = 2p
Nên
Gọi I,E,F lần lược là tiếp điểm của đường tròn tâm O nội tiếp với AB,BC,CA
Ta có OI = OE = OF = r
S ABC = S AOB + S BOC + S COA = AB.OI/2 + BC.OE/2 + CA.OF/2 = (AB + BC + CA).r/2 = pr
Cho tam giác ABC có chu vi 2p ngoại tiếp (I;r). Gọi a,b,c; ha,hb,hc thứ tự là độ dài và chiều cao tương ứng cạnh BC,CA,AB. Chứng minh:
a) 1/ha + 1/hb + 1/hc = 1/r
b) ha + hb + hc =2pr( 1/a + 1/b + 1/c )
Cho tam giác ABC có AB= 8cm; AC = 6cm và BC = 10cm. Tính chu vi đường tròn ngoại tiếp tam giác ABC?
A. 8 π (cm)
B. 10 π (cm)
C. 6 π (cm)
D. 12 π (cm)
Chọn đáp án B.
Ta có: A B 2 + A C 2 = B C 2 ( = 100)
Suy ra, tam giác ABC là tam giác vuông tạiA. Do đó, tâm đường tròn ngoại tiếp tam giác ABC là trung điểm M của BC.
Bán kính đường tròn là: R = BC/2 = 5cm
Chu vi đường tròn ngoại tiếp tam giác ABC là:
C = 2 π . 5 = 10 π (cm)
Chứng minh rằng nếu tam giác ABC có chu vi 2p, bán kính đường tròn nội tiếp bằng r thì diện tích S của tam giác có công thức : S = p.r
Gọi O là tâm đường tròn nội tiếp tam giác ABC
Nối OA, OB, OC
Khoảng cách từ tâm O đến các tiếp điểm là đường cao của các tam giác OAB, OAC, OBCv
Ta có : S A B C = S O A B + S O A C + S O B C
= (1/2).AB.r + (1/2).AC.r + (1/2).BC.r
= (1/2)(AB + AC + BC).r
Mà AB + AC + BC = 2p
Nên S A B C = (1/2).2p.r = p.r
cho tam giác ABC có chu vi 16cm ngoại tiếp (I).1 tiếp tuyến của(I) song song với BC cắt AB,AC lần lượt tại D và E.Tính đọ dài BC để DE có giá trị lớn nhất
Cho tam giác ABC ngoại tiếp đường tròn tâm O bán kich 2cm.Chứng minh tam giác nay có diện tích va chu vi bằng nhau về số đo?
Cho tam giác ABC ngoại tiếp đường tròn tâm I. Tiếp tuyến của (I) song song với BC cắt AB, AC tại D, E. AB=16, AC=20, BC=28.
a) Chu vi tam giác ADE
b) DE=?
Cho tam giác ABC có p, R và r lần lượt là nửa chu vi, bán kính đường tròn ngoại tiếp và nội tiếp tam giác. Tìm GTNN của \(\dfrac{p^2}{r\left(4R+r\right)}\).
cho tam giác ABC có A(-1;1) ; B(1;3) ; C(1;-1)
a , tam gisc ABC là tam giác gì , tính chu vi và diện tích .
b , tìm tọa độ tâm I và tính bán kính đường tròn ngoại tiếp tam giác ABC
c , tìm tọa độ điểm D có hoành độ âm sao cho tam giác ADC vuông cân tại D .