Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cuong Vuduy
Xem chi tiết
Không Tên
4 tháng 1 2019 lúc 0:35

Tam giác AMN có: AM = AN

=>  tgiac AMN là tam giác cân

=>  \(\widehat{AMN}=\widehat{ANM}=\frac{180^0-\widehat{A}}{2}\)      (1)

Tgiac ABC cân tại A 

=>  \(\widehat{ABC}=\widehat{ACB}=\frac{180^0-\widehat{A}}{2}\)    (2)

Từ (1) và (2) suy ra:  \(\widehat{AMN}=\widehat{ABC}\)

mà 2 góc này đồng vị

=>  MN // BC

Cuong Vuduy
Xem chi tiết
Luffy123
Xem chi tiết
Vũ Nguyễn Hiếu Thảo
10 tháng 7 2018 lúc 15:38

Kẻ tia NM cắt BC tại H

có AM=AN và góc BAC=90 => tam giác AMN vuông cân tại A

=> góc HNA=45

do tam giác ABC vuông cân => góc ACB=45

tam giác HNC có góc HNA+ACB=90

=> tam giác HNC vuông tại H

=> NH vuông góc BC

do tam giác ABC vuông tại A => BA vuông góc NC

mà NH và AB cắt nhau tại M

xét tam giác BNC có NH và BA là hai đường cao cắt nhau tại M

=> M là trực tâm tam giác BNC

=> CM vuông góc BN

Lovely Girl
Xem chi tiết
cuong vu manh
22 tháng 2 2015 lúc 13:37

xét TG AMC và TG ANB có

       AC=AB (TG ABC cân tại A) 

       G A chung

       AM=AN (GT)

 S  ra TG AMC=TG ANB (c.g.c)

ra CM=BN (2 cạnh tg ứng)

b) Vì TG AMC=TG ANB (cmt)

     S ra G ACM=G ABN (2 góc tg ứng)

        * G ACM+G MCB = G ACB 

            G ABN+G NBC = G ABC

            mà G ACM=G ABN (cmt)

                  G ACB=G ABC ( TG ABC cân tại A)

                 S raG MCB=G NBC 

                 S ra TG OBC cân tại O

                                    (2 góc ở đấy bằng nhau)

Mai Anh
25 tháng 11 2017 lúc 18:52

xét TG AMC và TG ANB có

       AC=AB (TG ABC cân tại A) 

       G A chung

       AM=AN (GT)

 S  ra TG AMC=TG ANB (c.g.c)

S ra CM=BN (2 cạnh tg ứng)

b) Vì TG AMC=TG ANB (cmt)

     S ra G ACM=G ABN (2 góc tg ứng)

        * G ACM+G MCB = G ACB 

            G ABN+G NBC = G ABC

            mà G ACM=G ABN (cmt)

                  G ACB=G ABC ( TG ABC cân tại A)

                 S raG MCB=G NBC 

                 S ra TG OBC cân tại O

                                    (2 góc ở đấy bằng nhau)

Nakame Yuuki
Xem chi tiết
Trần Thị Loan
16 tháng 11 2015 lúc 19:13

A B C M N I

Xét tam giác ABN và ACM có: AB = AC (vì tam giác ABC cân tại A); góc A chung; AN = AM (gt)

=> tam giác ABN = ACM (c - g - c)

=> góc ABN = ACM (2 góc tương ứng)

Mà có góc ABC = ACB (do tam giác ABC cân tại A)

Nên góc ABC - ABN = ACB - ACM => góc IBC = ICB => tam giác BIC cân tại I

First Love
16 tháng 11 2015 lúc 19:22

Ko thì còn cách nào nữa Ngô Nam

Nguyễn Hoàng Tân
Xem chi tiết
vothibaotrinh Vo
Xem chi tiết
Vũ Nguyên Hạnh
Xem chi tiết
Ngân Khánh
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 11 2023 lúc 13:29

Xét ΔAMN và ΔABC có

\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)

\(\widehat{MAN}=\widehat{BAC}\)

Do đó: ΔAMN đồng dạng với ΔABC

=>\(\widehat{AMN}=\widehat{ABC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên MN//BC

Xét tứ giác MNBC có MN//BC

nên MNBC là hình thang

NC=NA+AC

MB=MA+AB

mà NA=MA và AC=AB

nên NC=MB

Hình thang MNBC có MB=NC

nên MNBC là hình thang cân