cho tam giác abc cân tại a trên ab lấy điểm m ac lấy điểm n sao cho am=an tam giác amn là tam giác gì vì sao,cm:mn//bc
Tam giác AMN có: AM = AN
=> tgiac AMN là tam giác cân
=> \(\widehat{AMN}=\widehat{ANM}=\frac{180^0-\widehat{A}}{2}\) (1)
Tgiac ABC cân tại A
=> \(\widehat{ABC}=\widehat{ACB}=\frac{180^0-\widehat{A}}{2}\) (2)
Từ (1) và (2) suy ra: \(\widehat{AMN}=\widehat{ABC}\)
mà 2 góc này đồng vị
=> MN // BC
cho tam giác abc cân tại a trên ab lấy điểm m ac lấy điểm n sao cho am=an tam giác amn là tam giác gì vì sao,cm:mn//bc
cho tam giác ABC vuông cân tại A. Trên cạnh AB lấy điểm M, trên tia đối của tia AC lấy điểm N sao cho AM = AN. CMR: CM vuông góc với BN
Kẻ tia NM cắt BC tại H
có AM=AN và góc BAC=90 => tam giác AMN vuông cân tại A
=> góc HNA=45
do tam giác ABC vuông cân => góc ACB=45
tam giác HNC có góc HNA+ACB=90
=> tam giác HNC vuông tại H
=> NH vuông góc BC
do tam giác ABC vuông tại A => BA vuông góc NC
mà NH và AB cắt nhau tại M
xét tam giác BNC có NH và BA là hai đường cao cắt nhau tại M
=> M là trực tâm tam giác BNC
=> CM vuông góc BN
Cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm M. Trên cạnh AC lấy điểm N sao cho AM = AN.
a, Chứng minh:BN=CM
b, Gọi O là giao điểm của CM và BN.Chứng minh: Tam giác OBC cân
xét TG AMC và TG ANB có
AC=AB (TG ABC cân tại A)
G A chung
AM=AN (GT)
S ra TG AMC=TG ANB (c.g.c)
S ra CM=BN (2 cạnh tg ứng)
b) Vì TG AMC=TG ANB (cmt)
S ra G ACM=G ABN (2 góc tg ứng)
* G ACM+G MCB = G ACB
G ABN+G NBC = G ABC
mà G ACM=G ABN (cmt)
G ACB=G ABC ( TG ABC cân tại A)
S raG MCB=G NBC
S ra TG OBC cân tại O
(2 góc ở đấy bằng nhau)
xét TG AMC và TG ANB có
AC=AB (TG ABC cân tại A)
G A chung
AM=AN (GT)
S ra TG AMC=TG ANB (c.g.c)
S ra CM=BN (2 cạnh tg ứng)
b) Vì TG AMC=TG ANB (cmt)
S ra G ACM=G ABN (2 góc tg ứng)
* G ACM+G MCB = G ACB
G ABN+G NBC = G ABC
mà G ACM=G ABN (cmt)
G ACB=G ABC ( TG ABC cân tại A)
S raG MCB=G NBC
S ra TG OBC cân tại O
(2 góc ở đấy bằng nhau)
Cho tam giác ABC cân tại A. Trên AB,AC lần lượt lấy 2 điểm M,N sao cho AM = AN. Gọi giao điểm của BN và CM là I. CM : tam giác BIC cân
Xét tam giác ABN và ACM có: AB = AC (vì tam giác ABC cân tại A); góc A chung; AN = AM (gt)
=> tam giác ABN = ACM (c - g - c)
=> góc ABN = ACM (2 góc tương ứng)
Mà có góc ABC = ACB (do tam giác ABC cân tại A)
Nên góc ABC - ABN = ACB - ACM => góc IBC = ICB => tam giác BIC cân tại I
Bài 1:Cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm M , trên tia đối của tia CA lấy điểm N sao cho AM+AN=2AB . Gọi I là trung điểm của đoạn thẳng MN. Chứng minh rằng ba điểm thẳng hàng B,I,C thẳng hàng
Cho tam giác ABC(AB>AC) . Qua trung điểm M của cạnh BC kẻ đường vuông góc với phân giác trong của góc A , nó cắt các cạnh AB,AC lần lượt tại D và E, biết , AD = b ,CE = c. Tính độ dài đoạn AD,CE theo b và c
cho tam giác ABC cân tại A . AH là đường cao trên AB lấy điểm M, tren AC lấy điểm N sao cho AM=AN . CM: M,N đối xứng với nhau qua AH
Cho tam giác ABC vuông cân tại A. Trên cạnh AB lấy điểm M, trên tia đối của tia AC lấy điểm N sao cho AM=An. CMR : BN vuông góc với CM, CE vuông góc với BN
cho tam giác ABC cân tại A,trên tia đối tia AB lấy điểm M,trên tia đối AC lấy điểm N sao cho AM=AN.Chứng minh tứ giác MNBC là hình thang cân
Xét ΔAMN và ΔABC có
\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)
\(\widehat{MAN}=\widehat{BAC}\)
Do đó: ΔAMN đồng dạng với ΔABC
=>\(\widehat{AMN}=\widehat{ABC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên MN//BC
Xét tứ giác MNBC có MN//BC
nên MNBC là hình thang
NC=NA+AC
MB=MA+AB
mà NA=MA và AC=AB
nên NC=MB
Hình thang MNBC có MB=NC
nên MNBC là hình thang cân