cho tam giác abc, g là trọng tâm.một đường thẳng d hông cắt tam giác abc gọi a' b', c' g' lần lươt là hình chiếu của a, b, c, g trên đường thẳng d chứng minh rằng gg'=(aa'+bb'+cc'):3
Cho tam giác ABC có G là trọng tâm. Qua A kẻ đường thẳng D không cắt cạnh DC của tam giác ABC. Gọi D,K,F lần lượt là hình chiếu vuông góc B,G,C lên đường thẳng D.Chứng minh BD+CF=3DK
Cho tam giác ABC nội tiếp đường tròn (O); gọi D là trung điểm của cạnh BC, H là trực tâm của tam giác ABC. Hai đường thẳng AD và OH cắt nhau tại G. Chứng minh rằng: G là trọng tâm của tam giác ABC.
.1.Cho tam giác ABC cân tại A có AD là đường phân giác.
a) Chứng minh tam giác ABD = tam giác ACD
b) Gọi G là trọng tâm tam giác ABC. Chứng minh ba điểm A, G, D thẳng hàng.
c) Tính DG biết AB 13cm,BC 10cm
2.Cho tam giác ABC vuông ở A, có AB = 16cm,AC = 30cm. Tính tổng các khoảng cách từ trọng tâm G của tam giác đến các đỉnh của tam giác.
3.Cho tam giác ABC, trung tuyến AM. Từ M kẻ đường thẳng song song với AB cắt C ở N. Biết AN = MN, BN cắt AM ở O. Chứng minh: a) Tam giác ABC cân ở A
b) O là trọng tâm tam giác ABC.
4.Cho tam giác cân ABC, trung tuyến AM. Đường trung trực của AB cắt AM ở O. Chứng minh rằng điểm O cách đều 3 đỉnh của tam giác ABC.
Cần gấp ạ!
Cho tam híac ABC, G là trọng tâm. Đường thẳng d không cắt tam giác ABC. Gọi A' , B' , C' , G' lần lượt là hình chiếu của A, B, C, G trên đường thẳng d. Chứng minh: GG'= (AA'+BB'+CC')÷3
Cho tam giác ABC nhọn có trực tâm H. Vẽ hình bình hành BHCD. Đường thẳng qua D và song song với BC cắt AH tại E.
a) C/m:A,B,C,D,E cùng thuộc một đường tròn.
b) Gọi O là tâm đường tròn ngoại tiếp tam giác ABC. C/m: tam giác BAE = tam giác OAC bà BE=CD.
c) Gọi M là trung điểm BC, đường thẳng AM cắt OH tại. C/m: G là trọng tâm tam giác ABC.
Mọi người vẽ hình nữa nha
1. Cho tam giác ABC có G là trọng tâm. Đường thẳng d không cắt các cạnh của tam giác ABC. Gọi A',B',C',G' lần lượt là hình chiếu của A,B,C,G trên đường thẳng d. CMR: GG'\(=\)\(\dfrac{\left(AA'+BB'+CC'\right)}{2}\)
2. Cho tam giác ABC đều, D là 1 điểm thuộc cạnh AC, đt vẽ từ D⊥AB cắt đt vẽ từ C⊥BC tại E. Gọi M là trung điểm của AD tính góc MBE (gợi ý bàng 30 độ)
Bài 1:
Gọi E là trung điểm AG và AD là trung tuyến
Mà G là trọng tâm nên \(AE=EG=GD=\dfrac{1}{3}AD\)
Gọi E' và D' lần lượt là hình chiếu của E và D lên d
Ta có AA'//BB'//CC'//DD'//EE'//GG' (cùng vuông góc với d)
Xét hình thang AA'G'G có E là trung điểm AG và EE'//AA'//GG' nên E' là trung điểm A'G'
Do đó EE' là đtb hình thang AA'G'G
Do đó \(EE'=\dfrac{AA'+GG'}{2}\left(1\right)\)
Xét hình thang BB'C'C có D là trung điểm BC và DD'//BB'//CC' nên D' là trung điểm B'C'
Do đó DD' là đtb hình thang BB'C'C
Do đó \(DD'=\dfrac{BB'+CC'}{2}\left(2\right)\)
Xét hình thang EE'D'D có G là trung điểm ED và EE'//DD'//GG' nên G' là trung điểm E'D'
Do đó GG' là đtb hình thang EE'D'D
Do đó \(2GG'=EE'+DD'\left(3\right)\)
Từ \(\left(1\right)\left(2\right)\left(3\right)\Rightarrow2GG'=\dfrac{AA'+GG'+BB'+CC'}{2}\)
\(\Rightarrow4GG'=AA'+BB'+GG'+CC'\\ \Rightarrow3GG'=AA'+BB'+CC'\\ \Rightarrow GG'=\dfrac{AA'+BB'+CC'}{3}\)
E sửa lại cái đề đi nha
Kẻ MN đối ME sao cho \(MN=ME\); DE cắt AB tại F
Mà \(AM=MD;\widehat{AMN}=\widehat{EMD}\left(đối.đỉnh\right)\)
Do đó \(\Delta AMN=\Delta DME\left(c.g.c\right)\)
\(\Rightarrow\widehat{ANM}=\widehat{MED};AN=DE\)
Mà 2 góc này ở vị trí so le trong nên AN//DE
Vì tg ABC đều nên \(\widehat{FAD}=60^0;\widehat{ACB}=60^0\)
Mà tg AFD vuông tại F nên \(\widehat{ADF}=90^0-\widehat{FAD}=30^0\)
Do đó \(\widehat{ADF}=\widehat{EDC}=30^0\left(đối.đỉnh\right)\)
Ta có \(\widehat{ECD}=\widehat{ECB}-\widehat{ACB}=90^0-60^0=30^0\Rightarrow\widehat{ECD}=\widehat{EDC}\)
Do đó tg EDC cân tại E nên \(ED=EC\)
\(\Rightarrow EC=AN\)
Ta có AN//DE;DE⊥AB nên AN⊥AB
Vì \(\left\{{}\begin{matrix}\widehat{NAB}=\widehat{ECB}=90^0\\AN=EC\\AB=AC\end{matrix}\right.\) nên \(\Delta ANB=\Delta CEB\left(2.cgv\right)\)
\(\Rightarrow AB=AE\left(1\right);\widehat{NBA}=\widehat{EBC}\\ \Rightarrow\widehat{NBA}+\widehat{ABE}=\widehat{EBC}+\widehat{ABE}=\widehat{ABC}=60^0\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow\Delta BNE\) đều
Mà BM là trung tuyến \(\left(NM=ME\right)\) nên cũng là p/g
Vậy \(\widehat{MBE}=\dfrac{1}{2}\widehat{NBE}=30^0\)
cho tam giác ABC cân ở A , đường phân giác AH (H thuộc BC). Gọi D là trung điểm của AC,BD cắt AH ở G. Từ G kẻ đường thẳng song song với AC cắt AB ở K. Chứng minh :
a) tam giác AHB=tam giác AHC và AH vuông góc BC.
b) G là trọng tâm tam giác ABC.
c) ba điểm C,G,K thẳng hàng
( giúp mình với ạ:< mình cần gấppp !! )
a: Xét ΔAHB và ΔAHC có
AB=AC
\(\widehat{BAH}=\widehat{CAH}\)
AH chung
Do đó:ΔABH=ΔACH
Ta có: ΔABC cân tại A
mà AH là đường phân giác
nên AH là đường cao
b: Xét ΔABC có
AH là đường trung tuyến
BD là đường trung tuyến
AH cắt BD tại G
Do đó: G là trọng tâm của ΔABC
cho tam giác ABC, trung tuyến AM. Trọng tâm G. Vẽ đường thằng d không cắt tam giác ABC. Gọi A' , B' , C' , M' , G' lần lượt là hình chiếu của A, B , C , M, G trên đường thẳng d. Chứng minh rằng AA' + B'B + CC' = 3.GG'
cho tam giác ABC có G là trọng tâm ,đường thẳng d bất kì không cắt các cạnh của tam giác ABC,Gọi A',B',C' lần lượt là hình chiếu của A,B,C trên d,Chúng minh AA'+BB'+CC'=3GG'
cho tam giác ABC cân tại A , đường phân giác AH . Gọi D là trung điểm của AC , BD cắt AH tại G. Từ H kẻ đường thẳng song song với AC cắt AB tại K . chứng minh
a) tam giác ABH = tam giác AHC và \(AH\perp BC\)
b) G là trọng tâm tam giác ABC
c) C.G.K thẳng hàng
Hình bạn tự vẽ nha
a. Xét tam giác ABH và tam giác ACH có
cạnh AH chung
góc BAH = góc CAH [ vì AH là pg góc A ]
AB = AC [ vì tam giác ABC cân tại A ]
Do đó ; tam giác ABH = tam giác ACH [ c.g.c ]
\(\Rightarrow\)góc AHB = góc AHC [ góc tương ứng ]
mà góc AHB + góc AHC = 180độ
\(\Rightarrow\)góc AHB = góc AHC = \(\frac{180}{2}\)= 90độ
\(\Rightarrow\)AH vuông góc với BC
b.Theo câu a ; tam giác ABH = tam giác ACH
\(\Rightarrow\)HB = HC mà H\(\in\)BC
\(\Rightarrow\)H là trung điểm của BC
\(\Rightarrow\)AH là đường trung tuyến của tam giác ABC \((1)\)
Vì D là trung điểm của AC nên
BD là đường trung trực của tam giác ABC\((2)\)
Từ \((1),(2)\)và G là giao điểm của AH , BD suy ra
G là trọng tâm của tam giác ABC
c.Ta có góc AGC + góc CGH = 180độ [ vì ba điểm A, G,H thẳng hàng ]
mà góc CGH = góc AGH [ đối đỉnh ]
\(\Rightarrow\)góc CGK = góc AGC + góc AGH = 180độ
Vậy góc CGK = 180độ
\(\Rightarrow\)Ba điểm C,G,K thẳng hàng
học tốt
Kết bạn với mình nhé