Cho đa thức f(x) có bậc 2 thỏa mãn: f(0) = 2010; f(1) - f(0) = 1; f(-1) - f(1) = 1.
a) Chứng minh rằng: f(2) = 2015.
b) Tìm số chính phương m để f(2m) - f(2) - f(0) = 5m2 - 3m - 1.
(biết "số chính phương là bình phương của một số nguyên")
Cho đa thức f(x) có bậc 2 thỏa mãn: f(0) = 2010; f(1) - f(0) = 1; f(-1) - f(1) = 1.
a) Chứng minh rằng: f(2) = 2015.
b) Tìm số chính phương m để f(2m) - f(2) - f(0) = 5m2 - 3m - 1.
(biết "số chính phương là bình phương của một số nguyên")
a) Giả sử f(x)=ax2+bx+c
f(0)=0 <=> 0.a+0.b+c=2010 => c=2010
f(1)-f(0)=1 <=> f(1) =2011 <=> a+b+c=2011=> a+b=1(1)
f(-1)-f(1)=1 <=> f(-1)=2012<=> a-b+c=2012 => a-b=2(2)
Từ (1), (2), (3) => a=3/2,b=-1/2,c=2010
=> f(x)=3/2.x2-1/2.x+2010
=>f(2)=3/2.4-1/2.2+2010=2015 (đpcm)
b) f(2m)-f(2)-f(0)=5m2-3m-1
3/2.4m2-1/2.2m+2010-2015-2010=5m2-3m-1
<=>6m2-m-2015=5m2-3m-1
<=>m2+2m-2014=0
<=> \(\orbr{\begin{cases}m=-1+\sqrt{2015}\\m=-1-\sqrt{2015}\end{cases}}\)
=> Không có số chính phương m thỏa mãn
Mình góp ý chút nhé số chính phương là bình phương của một số tự nhiên nhé =))
Cho đa thức f(x) bậc bốn thỏa mãn 2 điều kiện sau: f(-1)=0 và f(x)-f(x-1)=x(x+1)(2x+1)
bài 1: Cho 2 đa thức P(x) và Q(x) thỏa mãn điều kiện: P(x)=Q(x)+ Q(1-x) vs mọi x thuộc R
Biết rằng các hệ số của đa thức P(x) là các số nguyên ko âm và P(0)=0. Tính P(P(3))
Bài 2: Cho đa thức f(x) là đa thứ bậc 4 có hệ số cao nhất là 1 thỏa mãn; f(1)=3;f(3)=11;f(5)=27
Tính f(-2) + 7*f(6)
cho đa thức f(x) có 4 bậc thỏa mãn f(1)=f(-1);f(2)=f(-2)
Chững minh :f(2013)=f(-2013)
Đa thức bậc 4 có dạng \(f\left(x\right)=ax^4+bx^3+cx^2+dx+e\)
+) \(f\left(1\right)=f\left(-1\right)\)
\(\Leftrightarrow a+b+c+d+e=a-b+c-d+e\)
\(\Leftrightarrow b+d=-b-d\)
\(\Leftrightarrow2\left(b+d\right)=0\Leftrightarrow b+d=0\Leftrightarrow b=-d\)(1)
+) \(f\left(2\right)=f\left(-2\right)\)
\(\Leftrightarrow16a+8b+4c+2d+e=16a-8b+4c-2d+e\)
\(\Leftrightarrow8b+2d=-8b-2d\)
\(\Leftrightarrow4b+d=0\Leftrightarrow4b=-d\)(2)
Từ (1) và (2) suy ra \(4b=b\Leftrightarrow3b=0\Leftrightarrow b=0\Leftrightarrow b=d=0\)
Vậy f(x) trở thành \(f\left(x\right)=ax^4+cx^2+e\)
f(x) là đa thức có bậc chẵn nên f(x) = f(-x)
Vậy \(f\left(2013\right)=f\left(-2013\right)\)(đpcm)
cho đa thức f(x) là 1 đa thức bậc 4 có hệ số lớn nhất =1 thỏa mãn f(1)=3 f(3)=11 f(5)=27
tính f(-2)+7f(6)
cho đa thức f(x) bậc 2 thỏa mãn f(0) = 2010; f(-1)-f(0)=1; f(-1)- f(1)=1
a) Chứng minh f(2)= 2015
b) tìm số chính phương m để f(2m)-f(2)-f(0)= 5m^2 - 3m -1
f(x)=ax^2+bx+c
f(0)=2010=>c=2010
f(1)-f(0)=a+b=1
f(-1)-f(1)=1>=-2b=1,b=-1/2;a=3/2
f(x)=3/2x^2-1/2x+2010
f(2)=6-1+2010=2015
=>dpcm
b.
m ko €z
f(2m)-f(2)-f(0)=6m^2-m-2015
<=>
m^2+2m=2014
(m+1)^2=2015
m ≠Z
cho đa thức f(x) là 1 đa thức bậc 4 có hệ số lớn nhất =1 thỏa mãn f(1)=3; f(3)=11; f(5)=27. tính f(-2)+7f(6)
cho đa thức f(x) là 1 đa thức bậc 4 có hệ số lớn nhất =1 thỏa mãn f(1)=3 f(3)=11 f(5)=27
tính f(-2)+7f(6)
cho đa thức f(x) là 1 đa thức bậc 4 có hệ số lớn nhất =1 thỏa mãn f(1)=3 f(3)=11 f(5)=27
tính f(-2)+7f(6)
1,Cho đa thức bậc 4 f(x) biết f(1)=f(2)=f(3)=0, f(4)=6 và f(5)=72. Tìm dư f(2010) khi chia cho 10
2,Cho đa thức bậc 4 f(x) có hệ số bậc cao nhất bằng 1 và f(1)=10,f(2)=20 và f(3)=30. Tính f(10)+f(-6)
3,Tìm đa thức f(x) biết rằng f(x) chia cho x-3 thì dư 2, f(x) chia cho x+4 thì dư 9 còn f(x) chia cho x^2+x-12 thì được thương là x^2+3 và còn dư.