Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
uy na
Xem chi tiết
Nguyen Linh Chi
Xem chi tiết
Hoàng Ninh
24 tháng 8 2021 lúc 12:46

\(a+c=2b\) (*)

\(2bd=c\left(b+d\right)\)(**)

Thế (*) vào (**)

\(\left(a+c\right)d=c\left(b+d\right)\)

Theo tính chất phân phối ta có:

\(ad+cd=cb+cd\)

\(\Leftrightarrow ad=cb\)

\(\Leftrightarrow\frac{a}{b}=\frac{c}{d}\)

Khách vãng lai đã xóa
Đẹp trai một vùng
Xem chi tiết
Lê Thị Hoài Thanh
Xem chi tiết
Kiệt Nguyễn
21 tháng 3 2019 lúc 11:23

                                      Giải

Ta có: \(\hept{\begin{cases}a+c=2b\left(3\right)\\c\left(b+d\right)=2bd\end{cases}}\Leftrightarrow\hept{\begin{cases}ad+cd=2bd\left(1\right)\\bc+cd=2bd\left(2\right)\end{cases}}\)

Từ (1) và (2) suy ra \(ad+cd=bc+cd\)

\(\Leftrightarrow ab=bc\)

Mà a, b, c, d là số dương nên a = c (4)

Từ (3) và (4) suy ra 2a = 2b hay a = b (5)

Từ (4( và (5) suy ra a = b = c.

\(\Leftrightarrow2bd=2cd\)

\(\Rightarrow b+d=2d\)

\(\Rightarrow b=2d-d\)

\(\Rightarrow b=d\)

Vậy a = b = c = d thì a + c = 2b và c( b + d) = 2bd.

vivaswala
Xem chi tiết
Steolla
27 tháng 8 2017 lúc 8:06

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

ST
27 tháng 8 2017 lúc 8:09

2bd = c(b+d)

=> (a+c)d=c(b+d)

=>ad+cd=bc+cd

=>ad=bc

=> \(\frac{a}{b}=\frac{c}{d}\)

Nguyen Thi My Duyen
Xem chi tiết
Nguyệt
3 tháng 11 2018 lúc 16:55

cm: \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

\(a+c=2b\Rightarrow2bd=\left(a+c\right).d=c.\left(b+d\right)\)

\(\Rightarrow ad+cd=cb+cd\)

\(\Rightarrow ad=cb\)

\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)

áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)

\(\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\left(dpcm\right)\)

p/s: vì bn vt sai đề nên đề cx có thể là cm: \(\frac{a}{c}=\frac{b}{d},\frac{a}{b}=\frac{c}{d},....vv\)

nên cách làm cứ thay a+c=2b rồi làm chứ mk cx ko bt đề có pk thế ko =)

Nguyễn Nguyên Quỳnh Như
Xem chi tiết
Phạm Nguyễn Tất Đạt
3 tháng 12 2016 lúc 15:27

Ta có:2bd=c(b+d)

Hay (a+c)d=c(b+d)

\(\Rightarrow\frac{c}{d}=\frac{a+c}{b+d}=\frac{a+c-c}{b+d-d}=\frac{a}{b}\)(T/C...)

\(\Rightarrow\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}-\frac{c}{d}=0\)

truong van bac
Xem chi tiết
Doraemon
1 tháng 4 2015 lúc 15:50

Ta có :

a + c = 2b         (1)

2bd = c.(b+d)     (2)

Thế (1) vào (2) , ta được;

(a+c).d = c.(b+d)

Thao tính chất phân phối, ta có:

ad + cd = cb + cd

\(\Rightarrow\) ad = cb \(\Rightarrow\)\(\frac{a}{b}=\frac{c}{d}\)( đpcm)

Nguyễn Bảo Chính
1 tháng 4 2015 lúc 16:06

a + c = 2b         (1)

2bd = c.(b+d)     (2)

Thế (1) vào (2) , ta được;

(a+c).d = c.(b+d)

Thao tính chất phân phối, ta có:

ad + cd = cb + cd

$\Rightarrow$⇒ ad = cb $\Rightarrow$⇒$\frac{a}{b}=\frac{c}{d}$ab =cd ( đpcm)

Trịnh Thị Huyền Trang
1 tháng 4 2015 lúc 16:34

a + c = 2b         (1)

2bd = c.(b+d)     (2)

Thế (1) vào (2) , ta được;

(a+c).d = c.(b+d)

Thao tính chất phân phối, ta có:

ad + cd = cb + cd

$$ ad = cb $$$$( đpcm)

Độc Tiêu Sầu
Xem chi tiết
Hoàng Phúc
7 tháng 3 2016 lúc 20:29

2bd=c(b+d)

=>2bd=bc+cd

mà a+c=2b(theo đề)

=>(a+c).d=bc+cd

=>ad+cd=bc+cd

=>ad=bc(cùng bớt đi cd)

=>a/b=c/d(đpcm)

Hoàng Phúc
7 tháng 3 2016 lúc 20:23

2bd=c(b+d)

=>2bd=bc+cd

mà a+c=2b(theo đề)

=>(a+c).d=bc+cd

=>ad+cd=bc+cd

=>ad=bc(cùng bớt đi cd)

=>a/b=c/d (đpcm)

Hatsune Miku
Xem chi tiết
Nguyễn Đức Tiến
4 tháng 1 2016 lúc 21:08

Vì \(a+c=2b;dc+bc=2bd\Rightarrow\frac{dc+bc}{a+c}=\frac{2bd}{2b}=d\)

\(\Rightarrow bc+dc=\left(a+c\right)d=ad+dc\Rightarrow bc=ad\Rightarrow\frac{a}{b}=\frac{c}{d}\)

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\Rightarrow\left(\frac{a+c}{b+d}\right)^8=\left(\frac{a}{b}\right)^8\)

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\left(\frac{a}{b}\right)^8=\left(\frac{c}{d}\right)^8=\frac{a^8+c^8}{b^8+d^8}\)

\(\Rightarrow\left(\frac{a+b}{c+d}\right)^8=\frac{a^8+b^8}{c^8+d^8}\)