Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
việt nguyễn duy
Xem chi tiết
Dang Tung
15 tháng 10 2023 lúc 8:41

\(R=\left(\dfrac{3\sqrt{x}}{\sqrt{x}+2}+\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{3x-5\sqrt{x}}{4-x}\right):\left(\dfrac{2\sqrt{x}-1}{\sqrt{x}-2}-1\right)\left(ĐK:x\ge0,x\ne4\right)\\ =\left(\dfrac{3\sqrt{x}}{\sqrt{x}+2}+\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{3x-5\sqrt{x}}{\sqrt{x}^2-2^2}\right):\dfrac{2\sqrt{x}-1-\left(\sqrt{x}-2\right)}{\sqrt{x}-2}\)

\(=\dfrac{3\sqrt{x}\left(\sqrt{x}-2\right)+\sqrt{x}\left(\sqrt{x}+2\right)+3x-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\dfrac{\sqrt{x}-2}{2\sqrt{x}-1-\sqrt{x}+2}\\ =\dfrac{3x-6\sqrt{x}+x+2\sqrt{x}+3x-5\sqrt{x}}{\sqrt{x}+2}.\dfrac{1}{\sqrt{x}+1}\)

\(=\dfrac{7x-9\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}+1\right)}\)

Bạn xem lại đề nhé, rút gọn thường ra kết quả rất đẹp chứ không dài như kết quả này đâu ạ.

việt nguyễn duy
15 tháng 10 2023 lúc 7:53

Giúp với ạ mình cảm ơn ai làm được mình cho 100sao 

 

Trần Minh Anh
Xem chi tiết
Nguyễn Ngọc Lộc
19 tháng 2 2021 lúc 19:56

Tham khảo thanh này để soạn đề chính xác hơn nha :vvv

Nguyễn Lê Phước Thịnh
19 tháng 2 2021 lúc 19:56

a) Ta có: \(M=\left(\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\right)\cdot\dfrac{x+3\sqrt{x}}{7-\sqrt{x}}\)

\(=\left(\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{7-\sqrt{x}}\)

\(=\dfrac{x-9-\left(x-2\sqrt{x}+\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{7-\sqrt{x}}\)

\(=\dfrac{x-9-x+\sqrt{x}+2}{\left(\sqrt{x}-2\right)}\cdot\dfrac{1}{-\left(\sqrt{x}-7\right)}\)

\(=\dfrac{\sqrt{x}-7}{\sqrt{x}-2}\cdot\dfrac{-1}{\sqrt{x}-7}\)

\(=\dfrac{-1}{\sqrt{x}-2}\)(1)

b) Ta có: \(x^2-4x=0\)

\(\Leftrightarrow x\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=4\left(loại\right)\end{matrix}\right.\)

Thay x=0 vào biểu thức (1), ta được:

\(M=\dfrac{-1}{\sqrt{0}-2}=\dfrac{-1}{-2}=\dfrac{1}{2}\)

Vậy: Khi \(x^2-4x=0\) thì \(M=\dfrac{1}{2}\)

Nguyễn Ngọc Trâm Anh
Xem chi tiết
tuan
12 tháng 7 2020 lúc 19:40

cậu cho mk xin link facebook của jonathan galindo đi rồi mk sẽ trả lời câu hỏi của cậu

Khách vãng lai đã xóa
tớ thích cậu
12 tháng 7 2020 lúc 19:43

tớ biết

Khách vãng lai đã xóa
tớ thích cậu
12 tháng 7 2020 lúc 19:44

đó là Jonathan

Khách vãng lai đã xóa
marie
Xem chi tiết
Lê Quỳnh Thanh Ngân
17 tháng 10 2018 lúc 21:13

cmr là cái j

Nguyễn Thị Xuân
4 tháng 4 2021 lúc 9:59

Lê Thanh Thùy Ngân 

cmr là chứng minh rằng bạn nhé 

Khách vãng lai đã xóa
nguyễn ngọc bảo trâm
Xem chi tiết
Despacito
12 tháng 11 2017 lúc 15:50

a) \(4x^2-1=0\)

\(\left(2x-1\right)\left(2x+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2x-1=0\\2x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{-1}{2}\end{cases}}\)

 vậy \(\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{-1}{2}\end{cases}}\)

b) \(2x^2+0,82=1\)

\(2x^2=1-0,82\)

\(2x^2=0,18\)

\(x^2=\frac{0,18}{2}\)

\(x^2=0,09\)

\(\Rightarrow x=0,3\)

vậy \(x=0,3\)

c) \(7-\sqrt{x}=0\)

\(\sqrt{x}=7\)

\(x=49\)

vậy \(x=49\)

d)  ko rõ đề bài

Dũng Nguyễn tiến
Xem chi tiết
Dũng Nguyễn tiến
Xem chi tiết
Dũng Nguyễn tiến
4 tháng 6 2021 lúc 10:03

/ kí hiệu là trên

 

Linh Linh
4 tháng 6 2021 lúc 10:47

undefined

Trang Vũ
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 10 2023 lúc 21:53

a: \(\dfrac{1}{m-2}\cdot\sqrt{m^2-4m+4}\)

\(=\dfrac{1}{m-2}\cdot\sqrt{\left(m-2\right)^2}\)

\(=\dfrac{1}{m-2}\cdot\left|m-2\right|\)

\(=\dfrac{1}{m-2}\cdot\left(m-2\right)\left(m>2\right)\)

=1

b: \(2\sqrt{x}=14\)

=>\(\sqrt{x}=7\)

=>x=49

\(x+2\sqrt{x}+1=4\)

=>\(\left(\sqrt{x}+1\right)^2=4\)

=>\(\left[{}\begin{matrix}\sqrt{x}+1=2\\\sqrt{x}+1=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=1\\\sqrt{x}=-3\left(loại\right)\end{matrix}\right.\)

=>x=1(nhận)

Nguyễn Ngọc Huyền Anh
Xem chi tiết
Hoàng Lê Bảo Ngọc
15 tháng 8 2016 lúc 21:07

Ta có : \(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}=\frac{\left(\sqrt{5}-\sqrt{3}\right)^2}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}=\frac{8-2\sqrt{15}}{2}=4-\sqrt{15}\)

Thay \(x=4-\sqrt{15}\) vào pt được : 

\(\left(4-\sqrt{15}\right)^2.a+\left(4-\sqrt{15}\right)b+1=0\Leftrightarrow\left(31-8\sqrt{15}\right)a+\left(4-\sqrt{15}\right)b+1=0\)

\(\Leftrightarrow\sqrt{15}\left(-8a-b\right)+\left(31a+4b+1\right)=0\)

Vì a,b là số hữu tỉ nên ta có : \(\begin{cases}8a+b=0\\31a+4b=-1\end{cases}\) \(\Leftrightarrow\begin{cases}a=1\\b=-8\end{cases}\)

Lightning Farron
15 tháng 8 2016 lúc 22:15

Ta có:\(x=\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}=\frac{\left(\sqrt{5}-\sqrt{3}\right)^2}{5-3}=\frac{8-2\sqrt{15}}{2}=4-\sqrt{15}\)

Thay vào ta có:

\(a\cdot\left(4-\sqrt{15}\right)^2+b\cdot\left(4-\sqrt{15}\right)+1=0\)

\(\Leftrightarrow a\cdot\left(31-8\cdot\sqrt{15}\right)+4b-b\cdot\sqrt{15}+1=0\)

\(\Leftrightarrow\left(31a+4b+1\right)-\left(8a+b\right)\cdot\sqrt{15}=0\)

Do a,b hữu tỉ \(\Rightarrow\begin{cases}31a+4b+1=0\\8a+b=0\end{cases}\)\(\Leftrightarrow\begin{cases}31a-32a+1=0\\b=-8a\left(1\right)\end{cases}\)

31a-3a+1=0 <=>a=1.Từ (1) =>b=-8

Vậy  a= 1 và b= -8