cho hình thang abcd có góc a=góc d=90 độ ac vuông góc với bd tại i
Cm ad^=ai.ac ; ai.ac=di.db
Cho hình thang ABCD có AB // CD , AD = 12 cm , CD = 16 cm . Góc A = góc D = 90 độ , hai đường chéo AC vuông góc với BD tại O . Tính diện tích ABCD
Cho hình thang ABCD có AB // CD , AD = 12 cm , CD = 16 cm . Góc A = góc D = 90 độ , hai đường chéo AC vuông góc với BD tại O . Tính diện tích ABCD
Cho hình thang ABCD có AB//CD góc A băng 90 độ hai đường chéo AC và BD vuông góc với nhau tại O biết AB=4cm , AD=10cm .Tính AC,BD,BC và diện tích hình thang ABCD .
Xét tam giác \(ABD\)vuông tại \(A\):
\(BD^2=AB^2+AD^2\)(định lí Pythagore)
\(=4^2+10^2=116\)
\(\Rightarrow BD=\sqrt{116}=2\sqrt{29}\left(cm\right)\)
Lấy \(E\)thuộc \(CD\)sao cho \(AE\perp AC\)
Suy ra \(ABDE\)là hình bình hành.
\(AE=BD=2\sqrt{29}\left(cm\right),DE=AB=4\left(cm\right)\).
Xét tam giác \(AEC\)vuông tại \(A\)đường cao \(AD\):
\(\frac{1}{AD^2}=\frac{1}{AE^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{AC^2}=\frac{1}{AD^2}-\frac{1}{AE^2}=\frac{1}{100}-\frac{1}{116}=\frac{1}{715}\)
\(\Rightarrow AC=\sqrt{715}\left(cm\right)\)
\(AE^2=ED.EC\Leftrightarrow EC=\frac{AE^2}{ED}=\frac{116}{4}=29\left(cm\right)\)suy ra \(DC=25\left(cm\right)\)
Hạ \(BH\perp CD\).
\(BC^2=HC^2+BH^2=21^2+10^2=541\Rightarrow BC=\sqrt{541}\left(cm\right)\)
\(S_{ABCD}=\left(AB+CD\right)\div2\times AD=\frac{4+25}{2}\times10=145\left(cm^2\right)\)
Cho hình thang ABCD có góc A=góc D=90 độ, AC vuông góc với BD tại O
a,CM AD2=AB.CD
b,Cho AB=9cm, CD=16cm . Tính diện tích hình thang ABCD
c,Tính OA, OB,OC , OD
ta có: góc D1 + D2 =90
mà D1 + C1 =90
=>D2=C1
xét tam giác ABD và DAC có
BAD=ADC
D2=C1(cmt)
=>ABD đồng dạng DAC (g-g)
=>AB/AD=AD/DC
<=>AD^2=AB.DC(1)
b) Bạn áp dung CT(1) tính AD sau đó tính DT abcd
c) Dựa vào hệ thức lượng trong tam giác vuông:
1/OA^2=1/ab^2 + 1/ad^2 =>OA=...
tính AC,BD bằng Pytago
OC= AC-OA
OD^2=OA*OC =>OD=....
OB=BD-OD
Chúc bạn học tốt !
Cho hình thang vuông ABCD có AB // CD, góc A = góc D = 90 độ, AB + DC = BC. Gọi I là giao điểm của AC và BD, trên cạnh BC lấy điểm M sao cho MB = AB. MI cắt AD tại N. Chứng minh: Mi vuông góc với AD.
Xét ΔIAB và ΔICD có
góc IAB=góc ICD
goc AIB=góc CID
=>ΔIAB đồng dạng với ΔICD
=>IB/ID=AB/CD=BM/MC
=>IM//DC
=>IM vuông góc AD
Cho hình thang vuông ABCD, góc A = góc D = 90 độ. AB=15cm, AD=20cm. Đường chéo AD cắt BD tại O. Tính:
a) OB,OD
b) AC
c)Diện tích hình thang ABCD
Cho hình thang ABCD có AB // CD . Góc A = góc D = 90 độ , hai đường chéo AC vuông góc với BD tại O , OD = 8 cm , OB = 2 cm .Tính diện tích ABCD
Cho hình thang vuông ABCD ( góc A= góc D=90 độ) và DC=2AB.Kẻ DH vuông góc với AC tại H.M là trung điểm HC.Chứng minh BD vuông góc với MD.
Bài 1: Hình thang ABCD có góc A = góc D = 90 độ, AC vuông góc BD tại O. Biết OA=45cm, OC=25cm. Tính BD,AB,CD
Bài 1: Hình thang ABCD có góc A = góc D = 90 độ, AC vuông góc BD tại O. Biết OA=45cm, OC=25cm. Tính BD,AB,CD