Cho các số thực a, b, c sao cho a + b + c = 3; a2 + b2 + c2 = 29 và abc = 11. Tính A = a5 + b5 + c5
Cho các số thực a, b, c sao cho a + b + c = 3, a² + b² + c² = 29 và abc = 11. Tính a⁵ + b⁵ + c⁵
ab+ac+bc
=1/2[(a+b+c)^2-(a^2+b^2+c^2)]
=1/2(9-29)=-10
=>a^2b^2+b^2c^2+a^2c^2=(ab+bc+ac)^2-2abc(a+b+c)
=(-10)^2-2*11*3=34
a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-ac-bc)=3*(29+10)=117
=>a^3+b^3+c^3=150
a^5+b^5+c^5
=(a^3+b^3+c^3)(a^2+b^2+c^2)-(a^3b^2+a^2c^2+a^2b^3+b^3c^2+a^2b^3+b^2c^3)
=(a^3+b^3+c^3)(a^2+b^2+c^2)-[(a^2b^2+b^2c^2+c^2a^2)(a+b+c)-abc(ab+ac+bc)]
=150*29-[34*3-11*(-10)]
=4138
cho các số thực a,b,c sao cho 1<_a,b,c<_2 .tìm max sao choP=|a-2b|+|b-c|+|c-3a|
cho a;b;c là các số thực dương sao cho a+b+c=3.CMR:\(\frac{a^2+bc}{b+ca}+\frac{b^2+ca}{c+ab}+\frac{c^2+ab}{a+bc}\ge3\)
dạng này thì chỉ có quy đồng thôi nhé mặc dù quy đồng chưa ra
bài 7 : cho biểu thức A=(a^2012+b^2012+c^2012)-(a^2008+b^2008+c^2008) với a,b,c là các số nguyên dương . CM : A chia hết cho 30
bài 8 : Tìm các số thực a,b sao cho đa thức : f(x)=4x^4-11x^3-2ax^2+5bx-6 chia hết hết cho đa thức x^2-2x-3
Trong không gian với hệ tọa độ Oxyz, cho 3 điểm A(a;0;0), B(1;b;0), C(1;0;c), với a,b,c là các số thực thay đổi sao cho H(3;2;1) là trực tâm của tam giác ABC. Tính S=a+b+c.
A. S = 2
B. S = 19
C. S = 11
D. S = 9
cho 3 số thực dương sao cho abc=1 c/m 1/a^3(b+c)+1/b^3(a+c)+1/c^3(a+b)>=3/2
Cho a,b là các số thực sao cho với mọi c > 0 ta có a < b+c
Chứng minh : \(a\le b\)
giả sử a\(\ge\)b
Khi đó \(\dfrac{a-b}{2}>0\)
Vì a<b+c với mọi c>0 nên \(c=\dfrac{a-b}{2}\)
Ta có: \(a\le b+\dfrac{a-b}{2}\) hay a<b ( mâu thuẫn )
=> giả sử a\(\ge\)b là sai
Vậy \(a\le b\)
1.cho a, b,c là các số thực dương thỏa mãn a^3 /(a^2+b^2) + b^3/(b^2+c^2) + c^3/(c^2+a^2) >= (a+b+c)/2
2.cho a, b,c là các số thực dương thỏa mãn (a^3 +b^3+c^3)/2abc + (a^2+ b^2)/c^2 + (b^2+c^2)/(a^2+bc) + (c^2+a^2)/b^2+ac) >= 9/2